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Abstract

A new form of the effective nuclear interaction is presented which is density-
dependent and separable in coordinate space. Calculations are made of the prop-
erties of the even-even closed-shell nuclei '°O, 34Si, “°Ca, *8Ca, “8Ni, °°Ni, ®3Ni,
78N, 8Zr, ?°Zr, '°°Sn, "4Sn, 132Sn, '*Gd and 2®®Pb as well as infinite symmetric and
asymmetric nuclear matter and neutron stars. Ground state observables are cal-
culated in the Hartree-Fock approximation. Corrections are calculated for binding
energies by summation of the perturbation series up to third order. The correc-
tion terms in the series are found to be small and convergent, giving confidence
that the method is applicable to the interaction presented.
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Chapter 1

Introduction

1.1 Nuclear Structure Theory

The science of nuclear structure attempts to explain the phenomena arising in
the atomic nucleus in terms of the protons and neutrons which constitute it and
the forces under which they interact. The type of phenomena which are seen in-
clude the nuclear mass, its size and shape, and the rich spectra of excited states,
each with certain good quantum numbers and excitation energies which may be
well-defined or broad resonances, and may be identifiable as single-particle or
collective behaviour. In weakly bound nuclei near the neutron drip line such ex-
otica as neutron skins and halos are in evidence. At the other extreme, near the
proton drip-line, proton radioactivity is observed. As well as these observables
in the time-independent problem, one observes phenomena in nuclear reactions
which a theory of nuclear structure needs to address such as the reaction cross
sections, fission barriers and lifetimes. The number of particles of a self-bound
nuclear system ranges from two nucleons in the deuteron to nearly three hundred
in the super-heavy nuclei currently being studied[1, 2, 3]. Furthermore neutron
stars are thought to be made of nuclear matter, bound due to gravitational forces,
and under more extreme physical conditions than “ordinary” nuclear matter, but
presumably subject to the same interactions.

The ability to explain all these phenomena is complicated by two things. The
more fundamental of these is the fact that the nuclear interaction is not fully un-
derstood, despite a considerable amount of effort spend in studying it. In fact,
Hans Bethe once suggested that more endeavour had been spent in studying the
nuclear force problem than any other problem in the history of science, and this
was in 1956[4]. The force between two nucleons must be ultimately described by
the combined effect of the forces between their quark and gluon constituents or
even from more fundamental constituents, should such things exist. Work exists
which describes the forces between observed particles as derived from the under-
lying quark-quark interactions[5] but, as yet, no full nucleon-nucleon interaction
derived just from more fundamental microscopic considerations is available. All
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interactions used in calculations of nuclei contain, at least in part, phenomenol-
ogy. That nucleons are made of more fundamental constituents is not to say that
one should be solving the many-body Schrodinger equation for a system of 3A (or
more) quarks. Since nucleons are the only particles actually observed in nuclei, it
is certainly to be expected that an expression for the interaction binding the nu-
cleons together can be written in terms of the nucleon coordinates and quantum
numbers without necessary recourse to the presumed substructure. This argument
is analogous to the fact that one describes atoms and molecules in terms of the
electron coordinates and degrees of freedom even though such systems manifestly
contain protons and neutrons.

The second difficulty in producing results in the field of nuclear structure is the
calculational complexity involved in solving the microscopic equations of many-
body quantum mechanics, especially given the rather complicated nuclear inter-
actions posited. At the present, and for the foreseeable future, approximations
need to be made to perform calculations of the majority of nuclei. These approx-
imations are often considerable.

1.2 Nuclear forces and the many-body problem

1.2.1 Realistic Interactions

The most fundamental nucleon-nucleon interactions currently used in nuclear
structure calculations are the so-called “realistic” potentials. These are based
around the assumption that the force between two nucleons is dominated by me-
son exchange. This approach agrees with the quark model at large separations
when the finite meson size and underlying quark structure are not relevant. The
short and intermediate range parts are phenomenologically parameterized to fit
nucleon-nucleon scattering data and the binding energy of the deuteron. Mod-
ern versions of these potentials, such as the Argonne v18 potential[6] are usually
used in conjunction with three-nucleon potentials[7, 8, 9] since three-nucleon
effects seem to be important in nuclei, as evinced by so-called Borromean nu-
clei, which are bound and consist of a core and two loosely bound particles, but
which would not be bound if one of these particles were absent. The necessity of
three-body interaction is also seen in the way the two-body interactions fitted to
two-body data alone fails to fit the binding energy of the triton and heavier nuclei.
The great drawback with using a “realistic” potential is that they are functionally
rather complicated, consisting of many terms, each dependent upon the states of
the particles, and they have a hard-core, which is to say that the potential be-
comes very strongly repulsive at small separation, so that “obvious” techniques
of many-body quantum mechanics such as perturbation theory, or the standard
Hartree-Fock approximation may not be used and rather more complicated tech-
niques need to be implemented. In addition, these forces are fitted to free nucleon
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Figure 1.1: The 'Sy part of the Argonne v18 potential. The pp and nn potentials are
identical and the pn potential is slightly different from both. The curve shows the strong
repulsion common to most realistic interactions.

data, so any effects which arise only when many nucleons are present are not ac-
counted for, except by the addition of many-body forces. Currently, no attempt
seems to be made to go beyond three-body interactions. Figure (1.1) shows the
dominant part of the Argonne v18 potential. Note that the strength of the term
for zero separation is ~ 3 GeV whereas the attractive mid-range part which is re-
sponsible for the binding is only about ~ 100 MeV. In the energy scale of nuclear
physics, a GeV is a very large energy — it is roughly the rest mass of a nucleon.

There are a vast number of methods which have been used to solve the many-
body Schrodinger equation with realistic interactions. The most venerable is the
Bruekner Theory[10], also known as the independent pair approximation which
takes the short range correlations into account by summing the ladder series of
diagrams. Other successful techniques have been in the form of Fadeev [11],
Variational Monte-Carlo[12], Green’s Function Monte-Carlo[13], Correlated ba-
sis function [14] and coupled-cluster[15, 16] calculations. These have allowed for
the study of a number of light nuclei up to A ~ 7, as well as the spherically sym-
metric '°O and “°Ca. As computational techniques and computer power advance,
one would expect to calculate heavier and heavier nuclei with these methods; how-
ever, since the complexity of a full many-body problem increases combinatorially
as a function of the number of particles, it is not expected that one would be able
to calculate all, or even the majority of, known nuclei in this way in the immediate
future.
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1.2.2 Effective interactions

In using an effective interaction one is attempting to construct a form of the nuclear
force which is typically simpler in form than the realistic interactions and is eas-
ier to use within calculational frameworks amenable to the calculation of medium
and heavy nuclei. For instance an effective interaction may be parameterized in
such a way as to avoid having a hard core. This is not as unreasonable as it might
sound; if the force is intended for use in the calculation of finite nuclear properties
rather than, say, scattering data, the Pauli exclusion principle keeps the nucle-
ons sufficiently far apart that they very rarely feel this hard core repulsion. It is
characteristic of effective interactions that they are suited for specific systems and
calculational techniques. They are widely used in single-particle models, which
dominate the microscopic calculations of medium and heavy nuclei.

The G-matrix expansion[17] provides a link between the realistic and effective
interactions since it derives a “renormalized potential” from a realistic interac-
tion which may be used for calculation in the same kind of situations as purely
phenomenological effective interactions.

In single particle models it is assumed that each nucleon moves in an average
field due to the action of the other nucleons. By this assumption one transforms
the N-body problem into N one-body problems, which are much easier to solve.
Single particle models are often used as the starting point for more sophisticated
calculations. The archetype of this paradigm is the shell-model[32], which as-
sumes a given static one-body potential which creates a spectrum of single-particle
states, occupied by the nucleons. The nucleons in these states then interact with
each other via effective interactions which are either phenomenological or mi-
croscopically derived from a realistic interaction to take into account the Hilbert
space assumed in the single particle model[33]. Although this is a computation-
ally easier process than the above methods with a full realistic interaction, one
must be near a closed shell in heavy nuclei for a shell-model calculation to be fea-
sible. Again, as techniques and computing advance, the boundaries of the nuclear
chart of areas closed to the shell model will recede, but they will not be eliminated
completely for some time. Furthermore, the theoretical basis of the shell model
rests on a number of assumptions and approximations which are not always well
justified[18], although this is true of the use of effective interactions in general.
Furthermore, in the shell-model, there is typically no link between the interaction
which produces the mean field, the single particle states and all the ground state
properties, and the interaction which acts between the valence nucleons giving
rise to the excited states.

1.2.3 Hartree-Fock calculations

The only fully microscopic models which are, at present, used to calculate the
entire range of nuclei are the Hartree-Fock(HF) mean field method and its rel-
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ativistic counterpart, the Relativistic Mean-Field(RMF) method. They provides
the bulk properties of the ground state and single particle spectrum, which can
then be used as a starting point for shell-model calculations, but from a nu-
clear effective interaction rather than an assumption. First introduced in atomic
physics[19], the HF method was used to calculate nuclear properties with a wide
range of interactions (see e.g. the exhaustive summary of Svenne[20]), but it
was not until density-dependent interactions, such as Skyrme’s interaction, used
by Vautherin and Brink[21], and the surface delta interaction[44], were used
that a Hartree-Fock calculation produced results which fitted both ground-state
radii and binding energies at the same time. The key to this was the interac-
tions’ density-dependence, giving rise to an extra potential in the mean-field —
the so-called “rearrangement potential”’. Since then, many parameterizations of
the Skyrme interaction have been made, as well as some modification of its func-
tional form. It has been applied to nuclei across the periodic table as well as to
neutron stars[22]. A link between the density-dependent effective interactions
like that of Skyrme and the realistic interactions was provided by Negele[23].
Extended versions of Skyrme’s interaction have even been used in shell-model
calculations to both generate the single particle basis and then, unaltered, as a
residual interaction[24, 25]. By doing a shell model calculation, however, one
again limits the range of nuclei that the technique may be applied to.

Despite the great achievements of the modern effective interactions used in
mean-field calculations, they all have the characteristic of being short-, or zero-
range, which makes them unsuitable for use in perturbation theory calculations,
since the matrix elements involved are too large (the perturbation is not weak
enough).

This means that one of the simplest and most elegant techniques for accounting
for both single-particle and collective behaviour, and for both ground and excited
state properties within one framework, with the same interaction, is not available
for use with the forces so far mentioned. The great utility of the perturbation
theory is that it is computationally feasible to calculate the lowest order diagrams
for any nucleus, and so one could calculate a much better approximation to the
exact wavefunction than in a mean-field alone without needing to stay close to the
closed shells. As mentioned above, effective interactions may differ in form quite
considerably from realistic interactions so that one need not have a short range
repulsion. So too, then, one can attempt to parameterize the effective interaction
in such a way that it is not of a very short range to use it in normal perturbation
theory.

Motivated by the ideas presented above, this thesis supposes that there exists
an effective nuclear interaction with which the techniques of standard many-body
perturbation theory may be used to calculate observables, and that this interaction
is of comparable quality to contemporary effective interactions. The focus is solely
on the ground states of spherical closed-shell nuclei and nuclear matter since these
are the simplest systems to calculate and therefore present the most convenient
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systems for creating a new effective interaction. The thesis is organised as follows:

Chapter 2 discusses the methods used to solve the many-body Schrodinger
equation for the interaction being used, which itself is the subject of chapter 3,
in which its form and character are expounded. Chapter 4 deals with some of the
computational details and approximations which affect the calculation. Chapter
5 discusses the numerical character of the force and explores how the different
parts of the force affect observables. The following two chapters give the physical
results; Chapter 6 contains details of the nuclear matter and neutron star calcula-
tions and Chapter 7 presents the results of calculation with finite nuclei. Chapter
8 summarises the work.



Chapter 2
Many-Body Perturbation Theory

2.1 Single-particle theories

An oft-used technique in quantum mechanics is to separate the Hamiltonian of an
insoluble problem into two parts, one of which is solvable and the other not. The
technique relies on the ability to choose the separation such that the solvable part
gives the dominant effect and the remaining part is small and may be treated as a
perturbation.

A useful way to perform this separation, in the case of a many-body system
subject to two- (or more) body interactions, is to add and subtract a single particle
potential, U(r), term to the Hamiltonian to give

H=T({)+ Vi(r) + V(r,12) = [T(r) + Vi(r) + U(r)] + V(ry, m2) = U[7) . (2.1)

-
Ho H,

The utility of this Ansatz is that the zeroth order problem of solving the many-
body Schrodinger equation with Hy as the Hamiltonian may be a good approxi-
mation to the true solution and will, for a sensible choice of U(r) be much easier
to obtain. In general, models which use this separation are termed singe-particle
or independent-particle models. Since the independent particles are fermions,
whether actual nucleons or quasi-particles, the ground state many-body wave-
function is a Slater determinant of single particle states, ¢;(r;),

®(T1,Tz,---,TN)ZAH(Pi(Ti)- (2.2)

Correlations are then defined as the corrections which need to be added to the
independent particle model to arrive at the true solution. Since the results of the
independent particle model depend upon the chosen potential, U(r), in Equation
(2.1) so, too, do the correlations. When one talks about single particle calculations
already containing correlations, as is often the case with density-dependent HF
calculations[97], it is usually meant that one considers an effective interaction to

7
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be, in principle, a renormalized realistic interaction. The solution of the effective
interaction in a single-particle model is then taken to include both single-particle
and correlation effects of the realistic interaction. Of course, a purely single-
particle model can never show certain correlation effects, such as the non-zero
occupation probability of states above the Fermi level[26], unless one introduces
quasi-particles.

There are many ways to calculate these correlations. The textbooks of Ring and
Schuck[28], deShalit and Feshbach[27] and Eisenberg and Greiner[39] describe
many of the methods used at the time of their publications (up to 1980). Some
other methods were mentioned in the previous chapter. Presented here is the
technique used in this Thesis, along with some mention of the relation to other
methods.

2.1.1 One-body potential

The prescription for generating the one-body part, U(r), facilitating the separa-
tion of the Hamiltonian varies between approaches. One approach is to make the
one-body part essentially trivial by choosing a well-know single-particle poten-
tial to augment the kinetic energy term, such as a harmonic oscillator potential.
This is the approach usually taken by the shell model. In its simplest form the
shell model contains only this spherical single particle potential with a spin-orbit
interaction [29] or for deformed nuclei, the extension to a deformed oscillator ba-
sis was provided by Nilsson[30]. More recently the residual interaction has been
treated in which the calculational effort is spent in trying to solve the Schrodinger
equation exactly by diagonalizing the full Hamiltonian in the basis given by the
single particle potential. Typically this is a large problem which necessitates a
truncation in configuration space, although “no-core” calculations have recently
been performed for the lightest nuclei[31]. The large calculations are possible
since the Hamiltonian matrices are typically sparse in this representation so can
be diagonalized by the Lanczos method. These techniques are reviewed in [32].
By choosing the single particle potential in this way, one separates the potential
which generates the single particle states from the interaction, which gives the
spectroscopy.

Another choice of single particle potential is to pick the “best” potential. In
this context, best means the potential which results in the Slater determinant so-
lution which minimizes the expectation value of the full Hamiltonian, H = Hy+H;.
The minimization procedure uses a variational principle which has, as the varia-
tional parameters, the single particle wavefunctions in the Slater determinant.
Such a method for choosing the potential U is called the Hartree-Fock method
and is described in Appendix A; it is the technique used in this work to obtain
the single particle states which define the many-body ground state. Being a vari-
ational technique, only the lowest energy state is given as its solution, although
one can extend the technique to excited states by including Lagrange multipliers
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and performing so-called constrained Hartree-Fock calculations[28]. One major
advantage with using the HF basis for perturbation calculations is that the Slater
determinant of the single particle states has the property that matrix elements of
the Hamiltonian between the ground state and any one-particle one-hole excita-
tion vanish identically. This property is known as Brillouin’s Theorem|35] and
greatly simplifies the perturbation calculations if the HF Hamiltonian defines the
unperturbed problem. In particular it means that the lowest non-zero term in the
perturbation theory is the second order term. It should be pointed out that most
HF calculations in nuclei are carried out without the intent of “going further”;i.e.
it is possible to get a rather good description of nuclear ground states from the
mean-field alone. This fact is one of the premises of the present study — that most
of the ground-state properties arise from the mean-field. It is the additional con-
tention that by a judicious choice of interaction one can calculate higher orders
of perturbation theory and thereby describe effects beyond the mean field, which
can not be accounted for by a single particle model alone.

2.2 Many-Body Perturbation Theory

The techniques of Many-Body perturbation theory provide a useful language for
discussion of the methods of calculating correlations, as well as giving an intu-
itive graphical representation. Appendix B gives a derivation of the Rayleigh-
Schrodinger perturbation theory and its application to a Hamiltonian with two-
body interaction, using the Hartree-Fock states as the reference state. Alterna-
tive derivations are widely available in the literature[34, 35, 36, 37, 38, 39]. The
graphical technique is discussed in Appendix C for Hugenholz diagrams. The alter-
native formulation in terms of Goldstone diagrams are discussed in the literature
(see e.g. [40]).

The method used in this thesis is to evaluate diagrams directly for the vacuum
amplitude diagram-by-diagram in a straightforward manner. This allows one to
write down the total energy of the system in a series

E=Eur+E2+Es+-- (2.3)

and to evaluate each term one by one and examine the convergence properties.
The contributions to the energy, E, to third order are given by

1 ~
Eur = ) (alT+ Vila) + 3 > (ab[Vlab) (2.4)
a<ef ab<er
Z Z ab\VIrs rs\VIab>. (2.5)

a;éb<eF T#S>€EF at € — € — &
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SEI Z Z Z (ab[V|rs)(cd[V|ab)(rs|V|cd)

(€a+€pb—€r—€s)(€c+ €4 — €1 — €)

a;éb<eF c#d<ef r#s>er

(ablV|rs)(rs|V|tu u|Vlab
ZZZ [VIrs) (rs[Vtu) (tu|V]ab)

(ea+€pb—€r—€s)(€q+ €p — €r — €y)

a;éb<eF T#S>€efF tEFU>EF

Z Z (ab[V/rs)(cr|V]at)(st|V|cb) - (2.6)

(ea+€p—€r —€5)(€p+€c— €5 — €)

_|_

aF#bF#c<er r#EsFEt>er

[t is to this order that the diagrams are calculated in this Thesis. The explicit
diagrammatic representation of these terms is given in Appendix C.

As a measure of the strength of the perturbative interaction, H;, the dimen-
sionless parameter « is defined as

‘ abl\7\rs>‘2

Z Z leq + €p — € — €42 2.7)

ab<ep TS>€F

which is identified as the average number of particles the second order correlation
excites from the Hartree-Fock ground state.

The perturbation theory gives a series for any observable, not just the energy
since it produces a series for the exact wavefunction, [¥), which is of the form

W) =|One) + Y ) CRlOm) +-- (2.8)

ab<ef YS>€F

where @y is the Hartree-Fock ground state Slater determinant, and @13 is a Slater
determinant with two particles excited from the HF ground state into higher HF
orbitals. The ellipsis indicates that higher order corrections exists which involve
exciting more particles from the HF ground state into higher states. The wave-
function is then expressed as a sum of Slater determinants. The perturbation
theory provides the coefficients, C!3 etc., in terms of the interaction potential H;.
This Thesis, however, does not address corrections to any observables but the
energy since the perturbation series for two-body observables such as the energy
is thought to be much larger than for one-body observables such as the density
if one uses the HF basis for perturbation theory. The purpose of this Thesis is
to explore the possibility of finding a potential for which the perturbation theory
converges and provides a reasonable fit in HF order for the ground state of spher-
ical nuclei, rather than to calculate the large range of observables for all nuclei,
which remains for future work.

2.2.1 Density-Dependent Interaction

In Appendix B it is seen that the separation of the Hamiltonian into the unper-
turbed (Hy) and perturbation (H;) parts takes place in such a way that H; is just
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the two-body interaction and H, is the solution of the normal Hartree-Fock equa-
tion. The omission of the density-dependence in this HF equation means that the
methods used in this Thesis implicitly involve the assumption that, at the level
of the perturbation theory, the densities are simple fixed functions which are not
related to the creation and annihilation operators and do not directly result from
many-body forces. If one did not make this assumption, the method would be-
come too complicated. One would certainly be restricted to integral powers of the
« and  parameters and even then, the appearance of a density in the denominator
of a function would require special consideration.

2.3 Other Methods

While the method in this Thesis involves summing, in principle, all diagrams
in the perturbation expansion, in practice, only a few are included since the
series converges quite quickly. Other techniques used for nuclear structure
calculations involve summing infinite series of diagrams. The Random-Phase-
approximation[42] (RPA) method may be derived from the time-dependent
Hartree-Fock equations[41], or by linearizing the equations of motion[39]. This
is equivalent to summing the subclass of diagrams which include only the inser-
tions given in Figure 2.1[37].

In Brueckner Theory[38] the ground state of a nucleus is calculated using a
renormalized potential (the G-matrix) which includes the ladder diagrams, which
is the series of diagrams featuring the insertion in Figure 2.2.

The second order diagram (Appendix C, Figure C.4) features in both these se-
ries. In the third order the particle-particle diagram of Figure C.5 contributes to
the Brueckner theory calculation and the particle-hole diagram to the RPA.

VY AA Y &Y

Figure 2.1: Insertions included in the RPA calculation

rd

Figure 2.2: Insertion in the series calculated by Brueckner theory



Chapter 3

Nuclear Force: Theory

Having discussed some aspects of nuclear structure theory, ways in which it is
usually approached, and discussed the methods used in the present work to attack
the problem, it is clear that a new interaction needs to be used. The criterion
which it must satisfy are that is must fit single particle properties well in the
Hartree-Fock approximation and be weak enough to produce small and converging
corrections in perturbation theory for many-body observables, particularly the
binding energy.

3.1 Nuclear Interaction

The two-body force used in this work consists of a sum of terms each of which is
separable in coordinate space. Each term consists of products of one body opera-
tors of definite angular momentum, and the terms are classified according to this
value as monopole, dipole and quadrupole terms for angular momental =10, 1 =1
and 1 = 2 respectively.

3.1.1 Monopole Interaction

The monopole interaction is in the form of a separable function, each part of which
is a scalar. In coordinate space it is written

V(r, 1) = WafaepPe(r1)pPe(r2) (1 + ao(Ti 1 + 17 713) + baT12T2:)
+ Wifa pP (r1)pP (1) (1 4 ar (91, + 17 13) + by112T22)
+ kVPp(r1)Vip(12), (3.1)

where the function f; is defined as
—1
=[] (3.2)
all space

12
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and W, &4, Ba, 0a, ba, Wy, &, By, ar, b, and k are parameters to be fitted to
experimental data. The first two terms in Equation (3.1) are functionally identical
in form, but have their own set of parameters. The subscript a denotes the at-
tractive term, so the strength W is taken to be negative. The subscript r denotes
the repulsive term, and W, is always taken to be positive.

In addition to this two-body interaction there is a spin-orbit force which we
postulate as a one-body field of the Blin-Stoyle form[43]. Its form is

vs.o(r) = Cl ap(r)l :
T or

S, (3.3)

where 1 is the orbital angular momentum operator for the particle and s is the
spin angular momentum operator. Note that this same Ansatz for the spin-orbit
interaction has been used previously in HF calculations with effective interactions
by Ehlers and Moszkowski[44] and Vautherin and Veneroni[45]. It has a single
parameter ¢ which is fitted to the spin-orbit splitting of nuclei.

3.1.2 Higher Multipole Interactions

The multipole interactions are written

1
Vp(r1,12) = Whpq,.q,fD Z (=DMrip(r1) Yim(F1)m20(12) Yiom(F2) (3.4)

M=—1
2

Vo(r,m2) = Woanafo Z (—1)Mrip(r1)Yam (1) 3p(12) Yoo m(f2).  (3.5)
M—2

Here, Wp 4, , are constant strength parameters for the dipole force, with q; =
d> = p giving the strength for the proton-proton interaction and q; = g = n
for the neutron-neutron interaction. Similarly constants Wq 4,4, and for q; = qa
give the pp and nn quadrupole force strengths. In addition a term acting between
proton and neutron states in the quadrupole force is considered with a strength
Wapn The functions fp and fg are introduced to control the A-dependence of
the force. In principle they may be of a similar form to the f of the monopole
force since the integral of the density over all space gives just the particle number
A. In the current work these functions are taken to be AY, since these terms
in the force are not included in the mean-field and so no functional variation is
performed where the results would depend on whether the force was written as
density-dependent or not.

In addition the Coulomb interaction is included. The direct part is imple-
mented exactly and the exchange term is treated in the Slater approximation[46].
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3.2 Philosophy

Having stated the form of the force, some explanation is in order to describe why
it is in the form it is. The following characteristics summarize the nature of the
interaction, the rationale of which shall be discussed here. The force is separable.
This term is used here rather loosely - in fact it is the sum of separable terms, but
this usage seems common enough in the literature to be used in the present case,
as well. By separable, it is meant that the terms in the force are written as the
product of a function of the (space, spin and isospin) coordinates of particle one
multiplied by a function of the coordinates of particle two. Since it cannot matter
which particle is labelled “one” and which one is labelled “two”, the two functions
are always the same in each term. Furthermore, the terms are separated according
to the multipolarity of the one-body functions which make them up. Each term in
the monopole interaction consists of a product of two | = 0 functions. In the dipole
term the functions are 1 = 1 and in the quadrupole term they are | = 2. Another
important aspect of the force is that itis density-dependent. The motivation for
writing the force in this way is discussed in the sections below.

3.2.1 Separability and Multipolarity

The separability of the force was chosen for two reasons. The first one is some-
what historical, and is also a reason behind the splitting up of the force into
multipoles, and is based on the fact that a simple model of a separable force
was used as a residual interaction called the pairing plus quadrupole (PPQ)
model[47, 48, 49, 50]. In this older work, the interaction is not density dependent
and is used in a truncated space of an harmonic oscillator potential. Their reasons
for considering such a separable interaction were that it would make the calcu-
lations much easier so that the model would be applicable, with 1960s computer
technology, to the calculation of a wide range of nuclei. This is not really an issue
today, but the success of the model showed that a separable interaction was a
viable way of parameterizing the effective nuclear interaction and despite its sim-
plicity (or, perhaps, because of it), it is still used in shell-model calculations[51].
The PPQ Hamiltonian lacks a monopole interaction which is necessary to give the
bulk properties of the nucleus like the binding energy and single particle ener-
gies and to provide a mechanism for saturation. If, then, one could produce a
monopole interaction to complement the higher multipole forces, one would ob-
tain a full interaction which could be used for a microscopic description of nuclei
which would both generate the one-body field and be used as the residual in-
teraction. A similar approach has been considered recently in the context of the
shell model[52]. This gives some rationale behind why the force is split up into
multipoles and why the dipole and quadrupole terms are separable. The sepa-
rability of the higher multipoles is not really a sufficient reason for making the
monopole force separable. In fact the main reason for doing so is so that the force
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will be weak enough to perform perturbation theory. Standard effective interac-
tions, such as the zero-range Skyrme interaction are too strong for this. In the
paper which first used the Skyrme interaction in the HF approximation[21] the
authors acknowledge “a perturbation calculation would actually diverge because
of the zero range”. 1t is known that separable interactions, several of which are
described in a review by Kerman[53], are weak enough for perturbation theory
to be performed[54] so extending the separable multipole philosophy of the PPQ
model to include the monopole interaction seems like a likely path to success. On
the other hand, the quality of the results from earlier separable interactions has
been rather poor by today’s standards. The force of Bressel et al.[55] was too
strong for normal perturbation theory to converge and the set of partially sep-
arable potentials of Rouben, Riihimaki and Zipse[56, 57, 58] have far too high
binding energies in nuclear matter. The most successful separable potential has
probably been that of Tabakin[59] which has been used in HF plus perturbation
calculations similar to the present work[60, 54] but the finite nuclear properties
of this force are not of the same quality as modern effective interactions.

3.2.2 Density-dependence

Neither the PPQ interaction as previously conceived nor separable interactions
of monopole form have been density-dependent. In the case of the residual in-
teractions, which is to say interactions between nucleons which determines the
spectroscopy after the ground state is calculated or assumed, this has led to them
to be considered in a restricted space. To do otherwise would be problematic
since they have an infinite range. By including a density-dependence the range
can be limited in the force itself and no truncations need to be made in the cal-
culation to avoid such physical problems as an infinite potential. In the case of
the monopole interaction, used to generate the bulk properties of the nucleus, it
was found that without the density dependence and the extra “rearrangement”
contribution to the binding energy which comes from it in the Hartree-Fock ap-
proximation, it was not possible to simultaneously fit nuclear radii and binding en-
ergies, for attempts to do so with density-independent separable interactions, see
Kerman’s review[53]. The introduction of density-dependence with the Skyrme
interaction[21] and the finite-range Gogny interaction[62 ] changed this feature of
HF calculations and shifted the focus of effective nuclear interactions to the class
of density-dependent interactions.

3.2.3 Range

As well as being density-dependent, other successful phenomenological effective
interactions are all characterised by a short range. In the case of Skyrme’s in-
teraction the range is zero. In the Gogny interaction parts of the Skyrme force
were replaced by a finite range Gaussian which resulted in a force which drops
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off quickly as the nucleons move apart. The separable density-dependent force
stands in contrast to these in that the force is felt at long distance as well as short.
From the terms of the form

V(r,m2) ~ p(r1)p(r2) (3.6)

it is seen that the only requirement for the force to be felt between two nucleons
is that both the nucleons are situated inside the nucleus in a region where the
density is non-zero.

3.3 Term by term rationale

3.3.1 HF Mean field

The Hartree-Fock energy, Eyg, and mean field are derived in Appendix E and the
results are show here for discussion. The energy is

1 1
Err = T+ Eeou+ Y {Eng“aNéa — S Wifo Mg,

&=a,r 2
1 2 ] (x7) (v)
+ SWebcfa, (ANp,)? = Wefa, [DeMET + acMiT | }
1 1
+ EkNg —7kMa + Ny,

L > ) EOMEIR ) Yam(F)] M p(r2) Ya m(f2)1li),

2 4
i,j<er M=—AA

(3.7)

where T is the kinetic energy and E.y is the Coulomb energy,

13
Ecoul = %elj Jd3r1 d3rzm — §e2 (%) J dr [pp(r)]4/3. (3.8)

lr1 — 12 4

The various quantities N and M with subscripts are integrals involving the one-
body densities (in the case of the N functions) or the nonlocal densities (the M
functions). They are all fully defined in the Appendix E.

The local Hartree-Fock potential is

Ucl) = 3 {Wefa, [Np (Be +1) +beANg, ] 0% (x)

E=a,r
— Welag/2) [f%]z [Néa + bE(ANﬁa)z] 0% (x)
= WefuBe [G.(x) + beGF(x) + beGF (9] 0P '
+ Walae/2)[fo ]*Mp % (x)
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+ WebeBefa, [ANg, ] 0P (x)5p(x)
+ Welae/2) [fug]” (be [ME? + M3 + ag [MET + MEP]) o' (x)
- Waagfa Be [G100) + G2 ()] P () |

+ 2kN4V?p(x) — ;(le(x))z, (3.9)

where the functions G(x) are defined in the Appendix E. The nonlocal Hartree-
Fock potential is

U, XN (x) = — 3 { Wefa (%, X')pP ()P (x)

E=a,r

+ Wiebefa, polx,x")pP(x)pPt (x")
+ Wgaaf(xapf(x,X’)pﬁ&(X)pﬁi(X’)}dDb(X’), (3.10)

and the state-dependent spin-orbit term is

T B R ER T(%) P AT

0x x 0x x?

The number wy is a weight factor and the density p,,(x) is the spin-orbit
weighted density as defined in Appendix E.

This is just the potential which arises from the monopole force. As shown
in Appendix A, the Hartree term due to the multipole forces is zero for closed-
shell nuclei and the exchange term is assumed to be negligible for the purposes of
calculating the mean-field. In addition, the Coulomb potential is

’ 1/3
ucoul(r) - eZJ d31’, pp(T ) ez <§> p:JB(T). (312)

|r—1"|7 T

3.3.2 Density dependence

Having decided to try to find a force which was separable and density-dependent,
the most obvious choice seemed to be a term of the form ~ pP(r;)p?(r,). Perhaps a
form like this with § = 1 would be the most obvious choice, but parameters need
to be included to give one the degrees of freedom necessary to fit nuclei. A term
like this, with just a constant strength, has the problem that its contribution to
the total energy goes roughly as A% not A, so it does not provide saturation of the
energy. Furthermore, the direct term it gives in the HF potential has a coefficient
which varies wildly across the nuclear chart, whereas it is known that the nuclear
density and the depth of the single-particle potential is quite independent of A, so
density-dependent HF potential should have largely A-independent coefficients,
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as one finds with the successful Skyrme potential[21]. The reason for this too-
strong dependence is that the direct energy of a separable force is always going
to have the square of an integral of some function of the density, which in the
present case is roughly proportional to A, when it would be preferable to have
just one such function. The remedy is to include in the coefficient to the term a
function which looks like one of these integrals and has a parameter which can be
made, more-or-less, to cancel it out. Whence the f parameter,
1

f'\’w) (3-13)

which cancels one of the two factors of the N integral in the energy
N ~ J p! P (x)d3x. (3.14)

In the direct HF potential, there is one factor of f and one of N so setting 1+ = «
gives an A-independent coefficient to the density function in the mean-field which
enables one to fit the whole range of nuclei with similar depths of the mean-field
potential and similar central densities. The possibility exists to vary the condition
« = B + 1 to change the fit, but only small variations away from this turn out to
produce anything sensible.

Some considerable effort was taken to try to fit a one-termed force of this form
to a wide range of nuclei. By one-termed it is meant that the force consisted only
of the kinetic, and Coulomb terms plus a one-termed potential of the form of the
first line in Equation ( 3.1) without the second line. Although it was possible to fit
the properties of a single nucleus this way, no overall parameterization presented
itself, so a modification of the force was necessary. So far there is a term with a
negative strength which, in the mean field, goes as U(x) ~ p(x). A hint was taken
from the Skyrme-like forces, which, as well as the leading term (proportional to t,
—see [21]) have a extra term with an overall positive (i.e. repulsive) strength and
a higher power of the density (the term proportional to t;. Therefore, an extra
term in the separable potential, like the first, but with its own set of «, f and
strength (W) parameters is added. This is second line of Equation(3.1).

3.3.3 Isospin-dependence

Without this term there is nothing in the force which accounts for the different
physics which arises in nuclei with extreme values of isospin. The necessity for
such and effect has been known for a long time, which is reflected in the earliest
semi-empirical mass formulz[76] by the inclusion of the asymmetry term. The
conventional choice for introducing isospin-dependence in a two-body interaction
is to add a term with the operator T; - T, or equivalently the isospin projection
operator P7. In the present case there is a slightly generalized form of the operator
T1 * T2.
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The isospin matrices are just the Pauli spin matrices

W (00) w(0F) =-(1%) e

and the isospin operator is
1

t= 21'
the action of which on proton and neutron states is
t.Ip) = —Ip), t.n) = n). (3.16)
One can define raising and lowering operators which have the following properties:
telp) = ), tin) = Ip), (3.17)
with other operations zero:
tlp) =t n) =0. (3.18)
These operators can be expressed in terms of the operators t, t, and t, as
ty =t +ity, to =ty —ity, (3.19)
and the reverse relations are
to= gttt = e[t 1) (3.20)

Now rewrite the operator t; - 1,

TT-T, = 44 -1
= bt + tiytoy + tixta,
= (g +to) (g ) — (b — o) (ta — t) +4t,t0,
= 2ttt +tiotoy) + 4t
= 2(t{1, + 7715 + T12T2s, (3.21)

where the 7 raising and lowering operators are the same as those for t (3.17) —i.e.
they turn proton states in to neutron states and vice versa with no extra factor.

Generalizing this to allow different parameters for the first two terms and the
last term allows one to have a force which breaks isospin symmetry, which is to
say the p-p, n-n and n-p forces are not necessarily the same strength. The factor
multiplying the density-dependent terms is then

(1+ ae(ti1, +71713) + beT12T22), (3.22)

with & = a, r for the attractive and repulsive terms respectively.

Having this more general isospin operator gives one more degrees of freedom
in fitting the force. Some modern realistic forces break isospin symmetry, such as
the Argonne v18[6 ] potential and CD-Bonn|[63], which they do because it fits the
experimental data better[64]. In an effective interaction, then, one should not be
afraid of doing so.
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3.3.4 Surface Term

The force as constructed so far depends only on the magnitude of the density in the
vicinity of the interacting nucleon. This means that the force is much weakened
for nucleons at the surface, over the region where the density is dropping. The
surface, however, ought to play an important part in the interaction since it is
the weakly bound nucleons which must take part in most scattering events. The
form of the surface term is chosen to be a derivative of the density since this
will be peaked at the surface. The separable form was again chosen so that the
perturbation theory matrix elements would be suitably small and the Laplacian
operator was chosen so that each one-body function in the separable force would
be a scalar.

3.3.5 Multipole terms

The reasons for including a multipole terms have been mentioned already. The
particular form is that of the well-known separable multipole forces except that a
density-dependence is added to allow the force to be used in an HF calculation in
the full space.

3.4 Choosing parameters - Experimental observables

The parameterization of the force is chosen in a way that, it is hoped, may lend
itself to the description of nuclear properties. The criterion, then, for choosing
the parameters is to find the set which fits observable data the best. The function
which describes the quality of the fit is the Chi-squared function which is defined

as
N

Ci—Xi)?
20 oy = 5 G X 3.23
X (Cq N ; eiz ) ( )
where i sums over all the observed quantities, C; is the calculated values of the
observable, X; is the experimental value and e; is the error in the experimental

value, so that the better-known observables are given greatest weight.

3.4.1 Nuclei

To explore this separable interaction, a spherical HF code, which can be used with
closed shell nuclei, has been written. In addition it provides a basis in which
perturbation theory calculations may be performed. Only a few nuclei are truly
spherical but it makes sense when developing a new interaction to begin with the
computationally more simple cases and proceed to more difficult calculations only
when one has shown the simple cases work. The nuclei taken in the fit in this work
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nucleus | "0 3Si °Ca *Ca *®Ni °°Ni ©®Ni 78Ni
Z 8 14 20 20 28 28 28 28
N 8 20 20 28 20 28 40 50

nucleus | 3Zr °Zr '0°Sn M4Sp  132§n 196Gd  08Ph
Z 40 40 50 50 50 64 82
N 40 50 50 64 82 82 126

Table 3.1: Nuclei included in fit

are shown in table 3.4.1. Most of the numbers N and Z for the nuclei considered
are generally considered to be magic. 40 is typically seen to be a shell closure
(the fp shell) but the next state (gs/,) lies very close above it; there is not a large
shell gap. 14 is not usually considered to be a magic number, but the spin-orbit
splitting between the first p-states in light nuclei is quite large so that it is a good
closed sub-shell. The same is true of 64 as of 14 where the splitting between the
d states provides a sub-shell closure and a moderate gap.

Data for these nuclei, as described in the next section are given in Chapter 7,
in which the comparison of calculated and experimental properties is discussed.

3.4.2 Observables
The following observables are used in the fit:

e Ground state binding energy.

The mass, M, of a nucleus is
M(Z,N) = Zmy + Nm, — B(Z,N)/c>. (3.24)

It is smaller than the mass of its isolated constituents, Z hydrogen atoms and
N neutrons by an amount known as the binding energy. It is the energy of
the interaction of the nucleons and is always positive for a bound nucleus.
It is related to the energy E(Z, N) by the relation

E(Z,N)= B(Z N). (3.25)

E is the quantity evaluated in quantum mechanics as the expectation value of
the total Hamiltonian of the system of Z protons and N neutrons bound in the
nucleus. Itisthe most reliable observable for ground state properties since it
can measured quite easily and the observed quantity is directly comparable
to the calculated expectation value.

e Single particle energies
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The single particle energies are not observables as such in that there is no
operator which acts on the many-body wavefunction to give as its expecta-
tion value a single particle energy. Koopmans’ theorem [65, 35] for density-
independent Hartree-Fock theory shows that the difference in energy be-
tween a nucleus E(N, Z) and a nucleus E(N,Z—1) or E(N —1,Z) is equal to
the single particle energy of the nucleus which was removed. With a den-
sity dependent potential it is no longer true; the removal of a nucleon alters
the density making the force change. This means that the remaining nucle-
ons “re-arrange’” themselves to find the new lowest-energy configuration. In
addition, as pointed out by Brueckner and Goldman[68], once a particle is
removed, its set of quantum numbers becomes available as an intermediate
state to the remaining nucleons for scattering events which will results in
perturbative corrections. In the present density-dependent HF calculation,
the effect of a change in the ground state density is already taken into ac-
count so that for the least bound state there is no correction but the removal
of more deeply bound states may cause a substantial correction. No calcu-
lation along these lines is made in the present case. A similar calculation by
Kohler[69] shows that the correction for the least bound states is small but
the correction to deeply bound states may be as much as several MeV.

Despite these caveats, energies and quantum numbers can be assigned to
resonances seen in scattering experiments and the results of nuclear strip-
ping or pickup reactions which tally with the expected single particle states
predicted by mean-field models. Although the absolute values of experimen-
tal single particle energies can not be compared with density-dependent HF
values exactly, at least the relative orderings may be.

e Form factors

The form factor of a given density distribution is its Fourier transform:
F(q) = Jd% KT o). (3.26)

For spherically-symmetric charge distributions the expression reduces to

F(k) = 47'(J drr?j,(kr)p(r), (3.27)
0

where j, = sin(x)/x is the zeroth order spherical Bessel function. The charge
form factor Fc(k) is related to the experimental electron scattering cross-

section[66 ]
do
dO
The charge density differs from the proton density in that it accounts for the
finite proton size. The prescription for doing this in the present work is to

(k) o [Fe (k)% (3.28)
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fold the intrinsic proton density with the nuclear proton density which is ap-
proximated by a Gaussian fitted to the proton size. This method is the same
as that used by Negele[67] except that he also considers a centre-of-mass
correction. In Fourier space, the correction becomes a simple product of
form factors. Given the assumption of a Gaussian form for the single proton
density, the Fourier transform is also a Gaussian and is, with a numerical fit
to the proton size,

5k)2
Fo(k) oce 0, (3.29)
The charge form factor is then
Fc(k) = NF,(k)Fr(k), (3.30)

and is normalized so that F(0) = 1.

e Radii

The mean square radius associated with a density distribution is defined, for
a spherical distribution, as

o [ drrtpg(r)

=4, 3.31

<T >q J" dTszq(T) ( )

The subscript q labels the density and could be an isospin number to give

the proton or neutron densities, or a label to indicate that it is the charge

density, or the total particle density. The root mean square (rms) radius is
then defined as

Tems,q = /(1) q- (3.32)

The rms radius of the charge density calculated using the interaction may be
compared with that of the charge density calculated as the Fourier transform
of the electron scattering form factor.



Chapter 4

Computational Implementation

4.1 HF equations in a Basis

The Hartree-Fock equations involve a self-consistency problem in that the poten-
tial in the one-body Schrodinger equation depends on the wavefunctions which
result as a solution of the equation. The usual method of solution of the HF
equations is an iterative procedure shown schematically in figure 4.1.

1 Make an initial guess of the
single particle wavefunctions

Construct new potential from
2 | wavefunctions and solve HF
equation

Does the solution of the
3 HF equation yield wavefunc- | Yes
tions different from those

used to create the potential?
no

/1 | Equations are solved

Figure 4.1: Schematic representation of the procedure for solving the HF equations

24
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Step 2 in Figure 4.1 is the one which can be difficult to accomplish. Constructing
the potential from the wavefunctions can pose some difficulty since the potential
includes the Fock (exchange) term which involves multidimensional integration for
the functions denoted as M and G in the expression for the Hartree-Fock potential
(E.91). In the case of spherical nuclei, the multidimensional integrals are never
more than two-dimensional and are evaluated directly in coordinate space using
the method of Gaussian quadrature[70].

The Hartree-Fock equations are integro-differential equations. The way they
are usually solved it by either direct numerical solution on a grid, or expansion
in a basis and the transformation to a matrix equation. In the present work it
was found that the extremely non-local character of the potential, as well as the
strong density-dependence, makes the first technique numerically unstable so the
second method was used.

To solve the Hartree-Fock equations by basis expansion, a basis is chosen which
is taken to be the simple harmonic oscillator. The choice of the oscillator is taken
because the eigenstates are analytically calculable and matrix elements of simple
functions (such as the kinetic energy) are already known. One proceeds by expand-
ing a Hartree-Fock wavefunction, ¢, in a truncated basis of harmonic oscillator
wavefunctions, ¢g,

(Pa(X) = Z Caﬁd)ﬁ(x)a (41)
B

where a represents all the quantum numbers of the HF state and 3 represents all
the quantum numbers of the harmonic oscillator state. x represents all relevant
coordinates (including spin and isospin).

The symmetries of the problem are included in the basis wavefunctions. The
spherically symmetric harmonic oscillator wavefunctions are used and the HF
wavefunctions are assumed to have the same symmetries:

Palx) = RiNgjale (¥) Vigtama (X) &x,
= Z C](\E]:TT:()QRnocloc (X)yjoclocmoc (Q) E'Toc 61(11& 6] ajoc6mamoc 6'1'(1'1'0( ) (4' 2)

where the relevant quantum numbers are written out in full. Here, the function
R is the radial part of the HF wave function and the function R is the radial part
of the oscillator wave function (see Appendix D). The rest of the wave function is
kept the same in the two representation in Equation (4.2) so the HF wavefunctions
are only, in fact, expanded in the principle quantum number. Rather then always
make this explicit, the expansion coefficients may be more frequently written in
the more compact form (4.1). The functions & are isospinors and Y are spinor-
spherical harmonics, which are the tensor product of a spherical harmonic and a
spinor:

yljm,- = Z <lml1/2ms|anj>Ylm1X1/2ms- (43)

myms
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Note that this basis expansion provides a convenient way to choose the initial
wavefunctions in step 1 — they may be taken as the harmonic oscillator functions.
Now consider the Hartree-Fock equation from appendix A (A.6)

2

" 92 bug + J dyp(y)vix, v)

€1@i(x) = )

@i(x) — J dyp(x,y)v(x,y)ei(y). (4.4)

This general HF equation does not explicitly include the rearrangement potential,
since the form of the contribution of the rearrangement term to the HF local and
non-local potentials depends on the exact form of the interaction. However, it is
known from appendix E that the rearrangement potential for the interaction under
study contributes local and non-local terms in just the form of the above equation
with different integrands. Therefore the results that follow will hold true for a
density-dependent interaction also, with suitable values of the local and nonlocal
HF potentials.
One inserts the relation (4.1) into the above HF equation (4.4):

ei ) Cpibp(x) = lt(X) +u(x) + J dyp(y)v(x,y)] > Cpidp(x)
B B

[[aupix yiix,ul ¥ cototy) (.5)
B

and acts at the left with [ dx¢i(x), to give
&y cmj dxdp (x)bp (x) = jdxdf;(x) [t(x) +ulx) + J dyp(y)v(x,y)] Y Chidp(x)
B B

- j dxp?, (x) J dyp(x, uv(xy) Y Coip(v)
B

€iCui = ZhaBCBi» (4.6)
B

which is of the form of a matrix-eigenvalue equation
hC = €eC, (4.7)

in which h is the matrix whose elements are those of the HF Hamiltonian eval-
uated between the oscillator basis states and C is the matrix of expansion coef-
ficients of the HF wavefunctions in terms of the harmonic oscillator wavefunc-
tions. The Hartree-Fock equations written in this way are also called Roothan’s
equations[71]. The procedure described in Figure 4.1 is implemented then by
making an initial guess for the matrix C. This then enables one to calculate the
densities with which the matrix h is calculated. The matrix h is diagonalised to
yield eigenvectors, C’ and eigenvalues e . If the new set of eigenvectors C’ equal
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the old set C then the problem is solved. In practice, the quantity which is checked
for convergence is the Hartree-Fock energy.

Owing to the symmetries in (4.2), the Hamiltonian matrix his in block-diagonal
form with sub-matrices labelled according to the quantum numbers j, 1, and ~.
This is a great aid in calculation since it requires only the diagonalisation of small
matrices.

4.1.1 Calculation of densities

To evaluate the HF field and energy, one must obtain the spatial density. Since
this density depends upon the HF wavefunctions, it can be represented in terms
of the harmonic oscillator wavefunctions:

p(x) = pp(x)+ pnlx),

pon(Xx) = ) @i(x)@alx)

a<er€p,n

- Z ana ap Riat )Rnﬁlﬁ(X)yfajama(/)z)ylﬁjﬁmﬁ(Q)SltxlﬁéjzxjﬁSmtxmB

a<ereEp,N «f}

= Y Y Y ChCapRuat ()R t(X) Vi () Vi (R)

a<ereEp,NNaNg ljm

= Y Y Y Culu L RuabIR), (4.8)

a<erEp,nnang 1j

assuming all the m-sub-states for each j-shell are filled. Note that each single-
particle wavefunction exhibits a (2j + 1)-fold degeneracy.

The fact that the density is represented in an analytic form is a great help
when it comes to evaluating the derivative of the density since the derivative of
the oscillator function is itself an analytic expression (See Appendix D).

4.2 Perturbation Corrections

The expressions for the perturbation corrections to the energy may also be simpli-
fied due to the assumption of spherical symmetry. This reduction is more involved
than for the densities and is presented in Appendix F .It is the expressions derived
in that Appendix which are directly computed and presented in Chapter 7.

4.3 Convergence in basis expansion

If the HF wavefunctions were expanded in an infinite basis then solving the matrix
equation would be exactly equivalent to solving the Schrodinger equation. It is,
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of course, impossible to solve an infinite-dimensional matrix eigenvalue problem
so the basis must be truncated at some value of principal quantum number —
the truncation in other quantum numbers is governed by the observed single-
particle states. It is thus necessary to understand the effects of such a truncation
on the physical results of the HF problem. Related to this is the fact that the
oscillator basis expansion is characterized by a size parameter b (see Appendix D),
or equivalently its energy quantum hw. In a finite basis expansion the choice of b
will affect the results since for one value of b the fraction of the HF wavefunctions
which overlap with oscillator states outside the space will be different from that for
another value of b. The prescription taken in this work is that since a variational
principle is at play, the parameter b is treated as an extra variational parameter.
For a given calculation, only a global b is chosen, whereas in some previous work
each single particle state is given the oscillator parameter which produces the
largest overlap with the actual wavefunction[67]. The justification for using a
single parameter is that the convergence properties as a function of basis size
seem to be good enough so introducing more b parameters would only result in a
more complicated calculation.

Since it is desirable to apply this theory to all nuclei, including those which are
weakly bound and have extended wavefunctions, and also since the perturbation
theory calculation involves the use of excited and continuum wavefunctions, con-
sideration must also be taken into account of the extent to which it is possible
to represent the wavefunctions of unbound single particles, i.e. plane wave-like
states, as an expansion in terms of eigenstates of an infinite potential, which pro-
duced only bound states.

4.3.1 Truncation effect in Hartree-Fock

Figures (4.2) and (4.3) show the Hartree-Fock energy for a sample parameteriza-
tion of the force used to calculate the nucleus 4°Ca as a function of the oscillator
size parameter, b, and the number of principle quantum numbers, N, in the ex-
pansion. The first plot shows that as one adds more states, the dependence on b
becomes much flatter. This is to be expected since in the limit of an infinite ex-
pansion, the set of oscillator states forms a complete set no matter what the size
parameter is. One also sees from Figs. (4.2) and (4.3) that the minimum occurs at
different values of b as the size of the space is increased. The second figure shows
more detail for the cases with larger N. In this plot one gets a view of the conver-
gence of the HF energy with increasing space size and sees the rather complicated
structure in the dependence of the energy on b. For the larger space sizes one
observes secondary minima which, as one varies parameters, can take over as the
true minimum.

The convergence of the Hartree-Fock energy as a function of space size is shown
numerically in Table (4.1). The third column shows the pleasing result that as one
adds more and more states in the basis expansion, the change in the HF results
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Figure 4.2: Hartree-Fock energy, Eyr, as a function of oscillator parameter, b, for dif-
ferent Hilbert space sizes in *°Ca. The crosses indicate the minima. The numbers on the
plot show the size of the principal quantum number space.

become less and less. Also shown is the convergence of the second order energy
correction as a function of space size. This also converges to six significant fig-
ures by the time 20 states are reached, but as one sees from the last column,
the convergence is somewhat slower than for the HF energy. This convergence is
represented graphically in Figure 4.4.

4.3.2 Representation of continuum states

In HF calculations of nuclei around the valley of stability the continuum states play
a rather small part. As one moves away from the valley of stability very weakly
bound and extended states become occupied and need to be well represented nu-
merically for a faithful calculation. When calculating correlations in perturbation
theory one scatters particles into highly excited states of positive energy so the
representation of these states is particularly important for perturbation calcula-
tions. These positive energy states are similar to plane waves and one would
not naturally try and expand a plane wave in an oscillator basis were it not for
the bound states being well represented in the expansion. It is only necessary
for the wavefunctions to be well represented over the region of the nucleus since
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Figure 4.3: Hartree-Fock energy as a function of oscillator parameter and size of Hilbert
space for **Ca. The crosses indicate the global minima, while the pluses indicate local
minima in the larger spaces, whose sizes are indicated by the numbers to the right of the
lines.

the matrix elements of the potential outside disappear very rapidly thanks to the
density-dependence. In figure 4.5 some positive energy s-states are shown in the
largest nucleus considered, 2°Pb, along with fitted plane wave states and the den-
sity profile on the same scale. As one can see all these states are well represented
over the region of the nucleus.

4.4 Parameterization

As discussed in the previous chapter, the parameters are chosen to minimized
a x? function. This procedure was partially automated through the use of
MINUIT[72], a minimization package which is part of the CERN libraries. The
results obtained in this way were used as a guide to regions of parameter space
where reasonable fits may be found, which are then obtained by hand.

Since it is assumed that the bulk of the binding energy comes from the HF
mean field, and to ensure calculation in a reasonable time, the parameters are
fitted first in the HF approximation. The calculation of the correlation effects then



CHAPTER 4. COMPUTATIONAL IMPLEMENTATION 31

Size of space, N EMF [MeV] [EQF —ENF,|/ERF ER) [MeV] \Eﬁ) — Eﬁlz\/Eﬁ)

2 -327.833 - -0.80203 -

4 -334.318 0.019430 -0.98778 0.188047
6 -335.990 0.004976 -1.02875 0.039825
8 -336.230 0.000713 -1.03501 0.006917
10 -336.286 0.000166 -1.03683 0.001755
12 -336.300 0.000041 -1.03691 0.000077
14 -336.304 0.000011 -1.03704 0.000125
16 -336.305 0.000002 -1.03702 0.000019
18 -336.305 0.000000 -1.03701 0.000008
20 -336.305 0.000000 -1.03701 0.000000

Table 4.1: Convergence of Hartree-Fock energy and second order energy correction as a
function of size of basis expansion

in principle would require the re-fitting of the force, but since the perturbation
corrections to the energy are found to be smaller than deviations from experiment,
re-fitting was not important.

Details of changes in observables as a function of the parameters are presented
in the next chapter, which serves as a guide to fitting nuclear properties as well as
being an exposition of the character of the force.

4.5 Centre-0Of-Mass Correction

The nucleus in a Hartree-Fock calculation is centred on the mean-field. In reality,
the nucleus is not localised and this anomaly in the HF calculation can lead to a
significant error, especially in light nuclei. Several different techniques are used
in the literature to compensate for this error(see Appendix E of Ref. [73]). In
this work no such correction is undertaken since the philosophy of the present
technique would suggest that this effect should be treated in the framework of
perturbation theory. In this first calculation of the present interaction, only the
straightforward evaluation of the lowest order vacuum amplitude diagrams is un-
dertaken.
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Figure 4.5: Positive energy single particle s-states in 2°¢ Pb up to the 20" s-state (N = 19)
for a calculation with 20 radial states per angular momentum state.



Chapter 5

Nuclear Force: Results

This chapter shows results of HF and perturbation theory calculations for a typical
set of parameters for some quantities of interest. Is does not show a comprehen-
sive set of observables for all the nuclei under consideration with a comparison to
data — that is the domain of chapter 7. Here the numerical properties of the force
are examined in the region of parameter space, as explored during the process of
fitting to finite nuclei, which produces a reasonable fit to give an overview of the
character of the force in a quantitative way and as an aid to using the force and
choosing and varying parameters.

5.1 Monopole Interaction

5.1.1 Contributions to the HF Energy
The Hartree-Fock Energy is (see Appendix E):

1 1
Ewr = T+Eou+ Y {zwaf%Né& — 3 Wefo M,

E=a,r
| 2 ] (v7) (v7)

+ ngbgfaa(ANfga) *zw‘gf(xa bEMB& ‘|‘CL£MB£ ] }

+ %kNé %kMdJrch. (5.1)

The terms in (5.1) are labelled for discussion, term by term in the order of ap-

pearance, as the kinetic energy, Coulomb (which consists of a direct and exchange

term), direct (attractive and repulsive), exchange (att. and rep.), iso-direct (att.

and rep.), iso-exchange (which splits into iso-exchange-a and iso-exchange-b, both

with attractive and repulsive parts), derivative direct, derivative exchange and
spin-orbit.

Figure 5.1 shows the contribution to the Hartree-Fock energy per particle, n,

from the various terms of the attractive monopole force and Figure 5.2 shows the

33
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Figure 5.1: Contributions to the HF energy, n, from the “attractive” parts of the

monopole potential

analogous contributions from the repulsive terms. Note the scales are such that
the zero does not appear on every frame. The numbers for these two figures are
combined in Figure 5.3 to show the total contribution, attractive plus repulsive,
from the various components of the monopole force. In this, as in all figures which
show a quantity as a function of A, the data points are for the nuclei mentioned
in Chapter 3. In particular, there are two nuclei with A = 48 in each plot, so a
sudden jump at A = 48, in those plots in which it occurs, is just a reflection of this.

There are several points to note. Firstly, the attractive parts of the force are
always larger in magnitude than the repulsive parts, and follow the same A-
dependence. The first part of this statement clearly must be true if the force
is to be binding. The fact that the A-dependence is the same, i.e. the peaks and
changes of direction appear in the curve in just the same places for both the at-
tractive and repulsive terms, means that the sum of the two also has the same
A-dependence.

The isospin-dependent direct interaction has a vanishing contribution to the
N = Z nuclei as it must since it depends on the isovector density dp = p, —pn. The
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Figure 5.2: Contributions to the HF energy, n, from the “repulsive” parts of the

monopole potential

contributions to the total energy from this term are much smaller than from the
isospin-independent term partly due to the small isovector density, and also due
to the fact the b parameters are usually fitted to be < 1. The exchange parts of the
isospin-dependent force, on the other hand, do contribute to all nuclei and are
on the same scale as the isospin-independent exchange since they depend on the
same density matrices. The exchange terms are also notable for their smoothness —
both the isospin -dependent and -independent terms have smooth A-dependence
which approaches zero as A increases. In the next chapter it is shown that the
exchange energy is zero in nuclear matter.

The contributions from the other terms in the potential are shown in Figure
5.4. The most significant contribution here is from the Coulomb term, about
which there is little to say since it is a well known force with parameters not
open for fitting. One can see the trend of increasing contribution to the energy
per particle as A increases, with downward lines in the isotopic chains of calcium,
nickel, zirconium and tin, as one would expect. In the exchange term one also
sees the isotopic chains clearly forming straight lines. The derivative term has
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Figure 5.3: Sum of contributions to the HF energy, n, from the attractive and repulsive
parts of the monopole interaction.

only the direct term calculated since the exchange term is rather too complicated.
The sign of the parameter necessary to give correct single particle properties leads
to a positive contribution to the Hartree-Fock energy, which is quite small, but
not insignificant. The spin-orbit force is nearly zero for those nuclei in which the
spin-orbit-split pairs are all fully occupied. The deviation from zero is due to the
fact that the wavefunctions in the states of different j are not quite the same.
For those nuclei which are not spin-orbit saturated there is a general trend of
decreasing contribution with higher A, indicative of the fact that the force only
contributes to the binding from a few states near the Fermi surface. The magni-
tude of the contribution is rather small and is fixed not by the binding energy, but
to the spin-orbit splitting of the single particle energies.

5.1.2 Variation of monopole force parameters

Starting from a set of parameters used in the previous section, which is the result
of a typical fit to the data, one may consider the act of singly varying any of the
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Figure 5.4: Contributions to the HF energy, n, from the Coulomb, gradient and spin-
orbit terms.

parameters to examine the effect of each of them separately. Having observed
that the attractive and repulsive forces give canceling contributions which have
the same A-dependence, it suffices to look at varying the attractive parameters
alone, since varying the repulsive parameters will just give the same results with
opposite sign.

o, and o,

The o parameters enter the HF energy through the f functions (see Equation (3.2))
which appearin all the terms of the monopole force, except for the derivative term.
In the HF potential, as well as through the f parameters, there are terms whose
x-dependence is specifically «a-dependent.

Taking a small increase in «,, from 2.0 to 2.01 one sees a slight increase in
the parameter f,_ so from the action of this quantity alone one would expect an
increase in the HF energy due to the strengthening of the attractive force and a
deepening of the HF potential. On the other hand, the terms in the potential
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Figure 5.5: Action of the variation of «, upon various contributions to the HF potential,
U(x), in light and heavy nuclei (**Ca and °3Pb). The different contributions to the HF
potential shown in the four frames are explained in the text.

whose x-dependence depends on «, has an extra factor of f, and is repulsive so
ought to counteract the effect of the general strengthening of the attractive term.
The effect of varying «, upon the explicitly «-dependent terns in the HF potential
is shown in Figure 5.5. The first frame shows the terms in the isospin-independent
part of the HF potential explicitly dependent on «, for *°Ca and 2°Pb. The large
contribution is from the direct rearrangement term. The very small contribution
near the x-axis is that from the exchange rearrangement term (that term which
features the function G(x) in Equation (3.9)). The second frame shows terms anal-
ogous to those in frame one, but for the repulsive force. Here one sees that a
fairly significant change arises despite the lack of any dependence in «,. The dif-
ferences then must be due to the change in density which arises. The third frame
shows the sum of the first two and the full HF potential (for neutrons) is shown
in the final frame. Although the explicitly x-dependent terms show a reduction
in binding, the overall change in the density and the effects of the change in the
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Figure 5.6: A-dependence of the binding energy per nucleon, —, for various values of

«q, and the change inn per unit change in «, as a function of A.

other parameters gives a net result of a deepened HF potential with a correspond-
ing increase in binding energy and decrease in radius. The numerical changes are
shown in Table 5.1 in which it is interesting to note that changing «, changed f,,

rather less than other of the parameters in the potential.

Figure 5.6 shows how the A-dependence of the binding energy per particle, n,
changes as a result of varying «,. As has been noted, an increase in «, increases

Quantity Eur (M EV) Tch(fm) foca N Ba N Br
Value|w,—2.00 -345.2 3.48 0.238 4.198 0.420 2.332
Valuelq, 201 -413.1 3.43 0.233 4.385 0.398 2.465

Percentage change 19.7 1.4 2.1 4.5 5.2 5.7

Table 5.1: Effect of a small change in x, upon observables and parameters of the mean

field for *°Ca.
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the binding energy and this is seen, in the left frame, to occur across the whole
range of nuclei. The right frame shows the change of binding energy per nucleon
per unit change in «, as a function of A. Here one notes that heavier nuclei are
affected more strongly than light nuclei with about a 20% difference in strength.
The dependence is quite smooth, with a small amount of shell structure in evi-
dence. The scale of the y-axis shows that very large changes in the binding energy
(and, in fact, in all other observables) result from small changes in «, which is not
surprising since «, features as an exponent in the expression for the force (3.1).

B, and B,

Like the « parameters, the § parameters enter into each of the terms of the
monopole force via their own functions, in this case the N functions (see Equation
(3.9)). The form of these functions looks like a reciprocal of the f functions and
one finds that an increase in a 3 results in a decrease in the corresponding Ng.
The “leading” term of the HF potential, i.e. the Hartree term which is not part
of the rearrangement potential has an x-dependence which is itself dependent on
the B, parameter. This term, for a small change in 3, is shown in the first frame of
Figure 5.7, added to the functionally identical term from the rearrangement po-
tential and the tiny part of the potential which arises from the exchange term but
has the form of a local one-body potential (that part which features the function
G(x)). The second frame again shows the corresponding action upon the same
terms for the repulsive part of the force and the two parts are added together for
frame 3. Frame 4 shows the effect of a small increase in 3, for the HF potential.
As with the variation of «, one concludes that the dominant effect of changing the
parameter is not directly through the parts of the force which explicitly depend on
it, but rather through the change in the density. Increasing 3, has the nett effect
of decreasing the depth of the HF potential and increasing the rms radius of the
density distribution.

The change in the A-dependence resulting from varying 3, is shown in Figure
5.8. The left frame gives a visual guide to the effect on the binding energy over
the periodic table as B, is varied. The obvious effect is seen to be a shifting of
the energies en masse. The variation of this effect with A is shown in the second
frame. The curve’s shape resembles that of its analogue in the variation of «,
except for a change in sign. This suggests that the « and 3 parameters are not
independent. In the next chapter the nuclear matter problem is studied in which
it can be seen that in the limit of infinite nuclear matter the two parameters are
indeed correlated.

Potential Strengths, W, and W,

The meaning of and the effect of changing the potential strengths are quite clear
— they control the overall strength of the interaction and the extent to which they



CHAPTER 5. NUCLEAR FORCE: RESULTS

41

[EEN

U(x) [MeV]

I\ I l I 1 I 1 I 1 I 1
|
\

| | | |
a1 B w N
o o o o
(=) (=) (=] (=)

500

-600 .

o

U(x) [MeV]

(— — —— —

1 Ill I 1 I 1 I 1 I 1

a1
[EEN
o

Figure 5.7: Action of the variation of 3, upon the HF potential in light and heavy nuclei
(*°Ca and *°8 Pb). The different contributions to the HF potential shown in the four frames

are explained in the text.

cancel each other out.

Just varying W, varies the depth of the potential and the HF energy in an
obvious way. A more interesting way to examine the potential strengths is to
vary them both while keeping an observable constant. Table 5.2 shows the effect

W, W, 1 (fm) EP
-1320.0 1431.3 3.32 -1.19
-1420.0 1605.8 3.40 -1.09
-1520.0 1785.0 3.48 -1.01
-1620.0 1986.9 3.56 -0.95
-1720.0 2157.3 3.64 -0.90

Table 5.2: Charge radius and second order energy correction in *°Ca as attractive and
repulsive potential strengths are varied at constant Hartree-Fock energy
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Figure 5.8: A-dependence of the binding energy per nucleon, —, for various values of
Ba, and the change inn per unit change in 3, as a function of A.

of varying W, and W, such that the binding energy of “°Ca is kept fixed (at 345.2
MeV). One sees that there is a linear dependence upon the potential strengths
of the charge radius so that one may fit both the energy and the charge radius
simultaneously for at least one nucleus with fixed values of the exponents « and
B.

The ~ 30% change in the second order energy correction shows that the amount
of total energy which comes from the correlation depends on how one chooses the
parameters. Clearly in this case one must choose the set of parameters which fits
the charge radius, but the changes in the second order correction show that one
may include as a fitting criterion the correlation energy.

Figure 5.9 shows how the binding energies of the other nuclei change between
the most extreme values of the potential strengths in Table 5.2. The top two lines
show the two curves of E/A as labelled by the left y-axis. Clearly there is only a
slight difference between the two curves. The lower curve shows this difference
and is labelled by the right y-axis. It can be seen that this curve of the differences
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Figure 5.9: Effect of varying W, and W, on the binding energy of a range of nuclei,
keeping that of °Ca constant.

mirrors the upper curves. This indicates that increasing the magnitudes of the
potential strengths serves to flatten out the shell structure somewhat.

Isospin parameters, a., by, a,, b,

From Figures 5.1-5.3 the direct isospin-dependent energy is seen to depend
strongly on the difference N — Z with the largest contribution coming from the
nuclei 72Ni, '3?Sn and 2°Pb, those being the nuclei with the greatest neutron ex-
cesses. In Figure 5.10 one sees the result upon the total binding energy per nu-
cleon of varying the b parameter for the attractive force. It is seen that there is a
large variation the the contribution to the HF energy from the b-dependent terms.
For a positive value of the b,, that is to say an attractive force in the direct part,
a large attractive contribution is seen for the nuclei mentioned above with large
neutron excess. Also of note is the exchange contribution which acts with opposite
sign to the direct term and results in reduced binding for the light N = Z nuclei
where its affect is strongest (see Figure 5.3).

As well as affecting the binding energy, the b parameters control the relative
depths of the proton and neutron potentials and so also give one the freedom to
fit the relative single particle energies of protons and neutrons. For the values of
b. used in Figure 5.10 and some values in between, the single particle energies
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Figure 5.10: Effect upon the binding energy per particle of the variation of the b isospin-
dependent parameter

of the few neutron and proton states either side of the Fermi level in 2°Pb are
shown in Table 5.3. One sees making the parameter b, more positive decreases
the binding of the proton states and increases the binding of the neutron states.
The action of b, is reversed as shown in Figures 5.1 and 5.2.

The a parameters feature only in the exchange part of the energy and potential.
Their effect then, as shown in Figures 5.1-5.3 is largest in light nuclei and smoothly
varying. Varying a,, as shown in Figure 5.11 reflects this behaviour and gives
one the freedom to vary the A-dependence of the fit to the binding energy. An
interesting effect of having a parameter which controls a part of the force which
contributes quite weakly, only via exchange parts in the HF approximation, is
that the contribution to the perturbation calculation to the energy may be large
since there is no calculational distinction between direct and exchange forces at
the level of perturbation theory. Figure 5.12 shows the size of the second-order
energy correction as a function of a,. The corrections are shown as contributions
to the binding energy, so are positive since the second order correction is always
binding. The quadratic behaviour of the energy with respect to a, can be seen as
contrasted to the more linear behaviour in the HF approximation. By increasing
the magnitude of the a parameters one can then obtain large values of correlation
energy for moderate changes in HF energy.

The figure also shows the difference in contributions to the N = Z and N # Z
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ba -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
7'C0h11/2 -11.9 -10.8 -9.5 -8.0 -6.2 -4.2 -1.4
nld;, | -10.7 -95 -81 -6.6 -48 -2.6 +0.2
n2s;, | -10.1 -89 -7.6 6.1 -43 -2.2 +0.6
nOhy,, | -6.7 -5.6 -4.2 -26 -0.7 +1.6 +4.2
nilf; ), -5.7 -46 -3.4 -20 -0.4 +1.6 +4.5
n0iy3, | -5.0 -4.0 -29 -15 +0.0 +2.0 +4.6
v2ps, | -9.7 -10.7 -11.8 -13.2 -14.8 -16.8 -19.3
vifs,, -9.6 -10.5 -11.6 -12.9 -14.4 -16.3 -18.8
v2pi, | -89 -9.8 -10.9 -12.2 -13.8 -15.7 -18.2
v1go,» -55 -6.5 -7.6 -89 -10.4 -12.2 -14.6
v0in2, | -39 -49 -6.1 -7.4 -89 -10.7 -12.9
v2ds, | -3.1 -40 -51 -6.2 -7.8 -9.6 -11.9

Table 5.3: Proton (m) and neutron (v) single particle energies near the Fermi level in
208 ph. The asterisks denote the highest occupied states.

nuclei from the a-dependent terms. This is understandable in the following terms:
An excitation arising from this term is non-zero if a single proton is excited to a

10

n [MeV]

‘ ‘ | ‘ | ‘ |
0 50 100 150 200
A

Figure 5.11: Dependence of the binding energy per nucleon on the parameter a,. Values
of a, range from —0.6 to 0.6 as labelled and increment in steps of 0.2.



CHAPTER 5. NUCLEAR FORCE: RESULTS 46

E, [MeV]
N
|

Figure 5.12: Dependence of the total second order contribution to the binding energy
on the parameter a,. The parameter a, is kept at zero.

neutron orbital and a single neutron is excited to a proton orbital simultaneously.
Since each excitation is an 1 = 0 excitation the lowest state a given proton can
excite to is the lowest unoccupied neutron state of the same 1 and vice versa for a
neutron exciting to a proton state. In an N = Z nucleus the proton and neutron
states are occupied to the same level so each excitation must involve a change in
principal quantum number and thus incur quite a large energy denominator. In an
N # Z nucleus one can have the situation in which a neutron excites to a proton
states in which all the (non-isospin) quantum numbers are exactly the same in
which the matrix element is large and the energy denominator is small, giving rise
to a large contribution.

Derivative force parameter, k

This part of the force controls rather strongly the density profile, particularly at
the surface. Without it, there is always a large peak in the densities around the
surface of the nucleus, which is particularly evident in heavy nuclei. Figure 5.13
shows the surface of the charge density in 2°®Pb as the k parameter is varied. As
one can see the peak is rather considerable if one omits this term (k = 0.0). In the
figure, the parameter is increased in steps of 2.0 as indicated. At some value near
6.0 the charge density fits that of experiment quite well, and then becomes worse
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Figure 5.13: Effect of varying k on the surface of the charge density

as the parameter is increased. The experimental data are the Fourier transform
of the charge scattering form factor[99].

k [Mevim'®] | Ng  Egew [MeV]
0.0 -5.59 0.00
4.0 -4.72 44.63
8.0 -4.24 71.79
12.0 -3.90 91.36
16.0 -3.65 106.6
20.0 -3.45 119.2
24.0 -3.29 129.7

Table 5.4: Hartree Energy contribution from derivative term as a function of term’s
strength in 23 Pb

Table 5.4 shows how, as one increases the strength of the derivative term, the
change in the density profile results in a decrease in the N4 parameter, which is
defined in expression (E.24) of Appendix E, so that, despite the term being pro-
portional to the parameter k, the increase in energy is less than linear. The other
significant effect of the derivative terms is related to change in the surface prop-
erties as shown in Figure 5.13. Since the shape of the HF potential is directly
dependent upon the shape of the density, the rounding of the surface of the den-
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Figure 5.14: Effect of varying k upon the neutron single particles energies near the fermi
surface in lead.

sity also smooths out the wall of the potential. The result of this is that those
high angular momentum states which spend most of their time near this surface
suffer a loss in binding. This is shown in Figure 5.14 for neutron states near the
fermi surface in 2°Pb. When k = 0 the N = 126 shell gap is not pronounced, but
as k increases the i;7,; state moves up as the rest move down and the resulting
shell gap is increased. Table 5.5 shows the numerical size of the gap between the
highest occupied and lowest unoccupied neutron states in 2°®Pb as shown in Figure
5.14.

k [Mev fm'® | Gap [Mev]
0.0 2.10
4.0 3.44
8.0 3.43
12.0 3.39
16.0 3.39
20.0 3.40
24.0 3.49

Table 5.5: N = 126 shell gap in ?°®Pb as a function of k. Experimental value is 4.23
MeV[21]
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Figure 5.15: Proton single-particle level spectrum of *Ca as spin-orbit paramter, c is
varied.

The reason that the single particle energies become more bound as k increases,
even though the contribution to the Hartree-Fock energy of this term is positive is
that the parameter N4 as shown in Table 5.4 is negative and appears with a single
power in the mean-field, but squared in the HF energy.

Spin-orbit parameter, c

Figure 5.15 shows the variation of the proton single particle energies up to Z = 40
as a function of the spin-orbit strength, c. One sees that as the parameter is

c [Mev fm’] | v, [fm]  Eg
0.0 3.50 0.00
50.0 3.49 -8.14

100.0 3.47 -17.34
150.0 3.44 -27.91
200.0 3.44 -40.43
250.0 3.43 -56.18

Table 5.6: Charge radius and contribution to HF energy from spin-orbit force as c is
varied in *®Ca.
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increased the magic number 28 appears and upon further increasing the magic
number 20 disappears. The correct value of the parameter is presumably around
150 Mev fm®> where both magic numbers exist. The fact that the 0fs,, and 0f; ),
states do not coincide in energy at ¢ = 0 is due to the exchange part of the isospin-
dependent force. The last term in the nonlocal HF potential (3.10) is, for protons

Uy (x, X" o (x) = — Y~ Wearfa, pn(x,x")pP(x)pPe(x') oo (x) (5.2)
&

which gives a different contribution according to whether the state which corre-
sponds to the proton state ¢y, is present in the neutron density p,(x,x’) or not.
Since the 0f;/, neutron state is occupied but the 0fs,, state is not, these two unoc-
cupied proton states see a spin-orbit splitting even without the spin-orbit force.

5.2 Higher Multipole forces

The higher multipole forces do not contribute to the direct HF energy in spherical
doubly-closed-shell nuclei (See Appendix E). There is an exchange contribution to
the energy of the form:

Enara = fAW/\ 1,02 Z Z M ) p (1) Yam(T1)) (19 0(12) Y a-m(F2))[51)
i,j<er M=—A
(5.3)
Since the exchange part of the interaction is presumably small by analogy with the
monopole field, its contribution to the HF field is neglected. The contribution to
the HF energy is calculated, as well as the contribution to perturbation theory.

It is difficult to show the behaviour of the multipole forces for a typical set of
parameters since the observables of the ground states of spherical nuclei do pro-
vide enough information to give definite values to these parameters. Although
calculations of excited states or deformed nuclei will be necessary to fit these pa-
rameters, there will be a contribution to spherical nuclei via the exchange term
in the Hartree-Fock approximation and in perturbation theory, so these possible
contributions are examined here.

The A-dependences of the higher multipole forces are controlled by parameters
fy so it is not worthwhile to examine such dependence since it can be set freely.
Instead, the results of varying the three strength parameters for the quadrupole
force are examined in the N = Z nucleus “°Ca and the N # Z nucleus *Ca which
are close enough in mass that the uncertainty in the A-dependence is irrelevant.
The function fq is chosen to be

1
A7/3
since this is the value used in Ref. [74]. This value is certainly not to be taken
as fixed, but only as a choice made since some definiteness is necessary for this

fo = (5.4)
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study. The actual A-dependence of the force may need to be quite different since
this density-dependent force used in the full space may be quite different from
the traditional density-independent quadrupole forces used in a restricted space.
Negative signs are chosen for the strengths since the quadrupole force is usually
considered to be attractive. In the case of the spherical nuclei in which the largest
contribution is from the HF exchange term, the effect is actually to lower the
binding energy.

The results for the contribution to the HF exchange energy as a function of the
strength parameters are shown in Table 5.7. In the case of “°Ca the results for
the pp and the nn force are almost the same, which is to be expected since their
wavefunctions and relative single-particle spacing are almost identical. The HF
energy contribution to the pn force is very close to that of the pp and nn forces, but
the perturbation calculation is noticeably different. This is due to the fact that the
proton and neutron states are shifted with respect to each other as a result of the
Coulomb interaction so that the energy excitations from proton to neutron states
and vice versa incur different energy denominators to those excitations which are
between single particle states of the same isospin. In the case of *3Ca the effect
of the A-dependence is seen to reduce the strength of the pp interaction for a
given W paramter. The addition of eight neutrons to the f; state results in quite

a substantial increase in the contribution from the nn force,2 which shows that the
quadrupole force has a large shell-dependence. Again, the pn force has a rather
larger effect in perturbation theory than either the pp or nn forces.

The linear behaviour of the HF exchange energy is evident. This exact linearity
is as a result of the approximation used, which neglects the effect upon the mean
field due to the multipole forces. The extra contribution to the second order cor-
rection is seen to be quadratic in the strength parameter. This is a natural result
of perturbation theory which orders terms by the number of interactions taking
place. Insecond order, there is a squared matrix element proportional to W§. The
quadratic behaviour is not exact since the quadrupole term cancels and augments
the monopole term (and the dipole term, when used) as shown in Appendix F.
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4OCa

Wapp [MeV] 0.0 -100 -500 -1000 -5000 -10000 -50000

E(Q [MeV] 0.0 0.051 0.254 0.508 2.359 5.078 25.393
Ez [MeV] | -1.268 -1.268 -1.268 -1.269 -1.288 -1.348 -3.261

By —E5 [MeV]| 00 00 0.0 0.001 0.020 0.080 1.993

Wi nMeV] 0.0 -100 -500 -1000 -5000 -10000 -50000

E(Q [MeV] 0.0 0.052 0.258 0.517 2.584 5.169 25.843
Ez [MeV] | -1.268 -1.268 -1.268 -1.269 -1.287 -1.347 -3.237

By —E5 [MeV]| 00 0.0 0.0 0.001 0019 0.079 1.969

Wapn [MeV] 0.0 -100 -500 -1000 -5000 -10000 -50000

EQ) [MeV] 0.0 0.052 0.257 0.515 2.573 5.147 25.733
Ez [MeV] | -1.268 -1.268 -1.269 -1.271 -1.347 -1.584 9.132

By —E5 [MeV]| 0.0 0.0 0.001 0.003 0.0079 0.0316  7.864

48Ca

Wapp [MeV] 0.0 -100 -500 -1000 -5000 -10000 -50000

EQ) [MeV] 0.0 0.047 0.238 0.476 2.380 4.759 23.795
Ez [MeV] | -3.149 -3.149 -3.149 -3.149 -3.165 -3.214 -4.778

By ~ES [Mev]| 00 00 0.0 00 0.016 0.065 1.629

W n[MeV] 0.0 -100 -500 -1000 -5000 -10000 -50000

EQ) [MeV] 0.0 0.083 0.415 0.830 4.149 8.297 41.485
E [MeV] | -3.149 -3.149 -3.149 -3.150 -3.175 -3.254 -5.795

ES —ES [Mev]| 00 0.0 0.0 0.001 0.026 0.106 2.646

Wapn [MeV] 0.0 -100 -500 -1000 -5000 -10000 -50000

EQ [MeV] 0.0 0.054 0.271 0.542 2.711 5.421 27.107
E [MeV] | -3.149 -3.149 -3.151 -3.155 -3.251 -3.535 -12.346

ES ~ES [Mev]| 00 0.0 0.002 0.006 0.102 0.386  9.197

Table 5.7: Contribution from the quadrupole force to the HF exchange energy (E(Q)). E(y,

is the total second order correction and EEZQ)) —Eg is the change in second order correction
due to the quadrupole force.



Chapter 6

Nuclear Matter and Neutron Star
Calculations

The purpose of nuclear structure theory is to describe the properties of observed
nuclei given some kind of nuclear interaction or potential as input. The difficulties
of performing full calculations and the desire to examine the properties of many
candidate interactions have led to infinite nuclear matter calculations becoming a
standard technique in examining the properties of nuclear potentials.

In its simplest form, infinite nuclear matter consists of an equal (and infinite)
number of protons and neutrons interacting via a nuclear potential but with the
Coulomb interaction “switched off”. One may then calculate its binding energy per
nucleon as a function of the nuclear density. The minimum point of this curve gives
the equilibrium density and energy. The existence of the minimum at the correct
energy and density is a necessary result which is a reflection of the saturation of
nuclear forces.

The observables in nuclear matter are identified in a number of ways. The den-
sity is inferred from the central densities of heavy nuclei and is reasonably certain
since there is not much variation in this value between nuclei (saturation of the
density). For energies one considers terms in the simple semi-empirical mass for-
mula of Weizsidcker-Bethe [76] which have the correct A-dependence to be finite
in nuclear matter, namely the volume and asymmetry terms. Other observables
are considered below.

More detailed descriptions of nuclear matter are widely available in textbooks
on nuclear physics and many-body physics (see e.g. [34, 36, 37]) and in review
articles (see e.g. [75]).

53
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6.1 Symmetric Nuclear Matter

6.1.1 Single particle wavefunctions

Since infinite nuclear matter is infinite and homogeneous, the single particle wave
functions must be translationally invariant, hence they are plane waves states.
Nuclei also have intrinsic spin and isospin so each single particle state also has a
spinor and isospinor associated with it:

1
LY

where x, is a spinor and & is an isospinor.

da(T) = —=e™ "Xox (6.1)

6.1.2 Density

In nuclear matter theory, the system is a Fermi liquid, consisting of independent
particles occupying states up to the Fermi level. In this picture we may write the
number of particles as

A=) 0(kr—k) (6.2)
kot
where 0(x) is the step function:
1 >0
e(x):{o §<o : (6.3)

As the size of the system increases to infinity the sum over momentum states
becomes an integral and the expression for the number of particles becomes

_ V 3
A = (27‘()3;Jd k0(kr — k)
4v ke
+ I 471L k Jdk
2V

Dividing by the volume, the density p = A/V is

213
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6.1.3 Kinetic Energy

The kinetic energy of a many-particle system may be written as the sum of the sin-
gle particle kinetic energies, T = Zi<imi> which, in the case of the single particle
states defined in Equation (6.1), is:

T= Z l d3 —ik-r TET _]E iker E (6 6)
- V re Xo' T zm e XD‘ T .
kot

where x, is a spinor and &, is an isospinor. Since the kinetic energy operator
does not act in the spin or isospin spaces, the products of the spinors and their
hermitian conjugates is unity. The action of the Laplacian on the exponential is
just V2et™ = —kZet*T 5o that

ﬁz
T = —K?
%Zm
vV R’ kr
= 4 —4m| k'dk
(273 2m “L
VRS
5m?m
23\ | 3Rk
3?2 52m
PELLS:
52m

(6.7)

Hence 2,

T 3R’k

— = 6.8

A 52m (6.8)
which is the kinetic energy per particle. Using the relation between kr and p (6.5),
the kinetic energy per particle may also be expressed as

2
T 3R (37%\° >
—=—— | — 3. 6.9

A 52m ( 2 > P? (6.9)
In nuclear units, and taking the mass to be the average of the neutron and proton
masses, m =~ 938.8 MeV, the kinetic energy per particle is approximately

T

K:akp

wiN

~ 75.0p7 MeV (6.10)

6.1.4 Potential Energy

The total potential energy due to a two-body interaction in a many body system
may be expressed as

V=23 (VL 2)0A) — AWV (1,2)jA)) = Ep — Ee (6.11)

Ap
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where A and u each represent all the quantum numbers of the individual particles
and the sums run over all occupied states. Ep is called the direct term, and E¢
the exchange term. Considering first the direct term, with the central part of the
two-body interaction acting between the plane wave states, the energy is

k<k]: k<k]:

ED - Z Z Z k}‘ G}‘T}‘k o-llTll|WE,f(Xg ( ) pBE. pBE. |k7\ O-ATAkaGpr>

E=a,r k)\O')\T}\ kpopTyu

2
— Z% (Z(kcvrlpﬁlkoﬂ) Wefy, (P)

& kot

2
1 3. ,—ikr B iker
- Zz ‘E.J"pocad_%-r (4Zvjdre p-re (6.12)
K

E=a,r

Using the fact that in infinite nuclear matter, the density is a constant, the func-
tions p, may be taken outside of the integrals:

ED:ZZ %v (Z1>

&=a,r
= ) 8Wphey! ( ( ZV 3J g dk)2
E=a,r m)* Jo
- A sweny (3vam)
- 2 (3) (3) -
&=a,r
_ E_Z A%wapmawl (6.13)

so that the contribution to the energy, per nucleon, is

Ep 1 284~ 1 _
ED _ Zy\y p2Baoat] 4 Ly o2Brort] 6.14
A 2P T W (6.14)

The exchange term, E; is

k<kf k<kp
E; = Z Z Z (aoaTaku 0, TuWefq, (p)pPe(r1) pPe (r2) [k 0T ka oA TA)
E=a,r kAO'ATA kpoptu
1 k<kr k<kf
= D SWifelp) D ) [laovmlof ko)
g KAOATA Kuop Ty
k<kr k<kf

- Zz Efd31”p Z Z

kaoath kpopty

2
J d3re TPtk 86,00 Oty (6.15)
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Again taking p to be constant, the integral just gives a delta function:

_ 25
Be = Z 2 oc;_v azzékxku
i=ar ka  kp
k
1 4 L
= W 1
E=Zar2 apaav;
28 1 Vo 24
= 2WipPem*ey ( J' 4tk k>
(;FZ - (2m) Jo
— ! 26&*0“22]@
N SZZMZW‘;’p 3m?
= Z %pzﬁafxa-ﬂ (6.16)
E=a,r

and the energy per nucleon, E;/A — 0 as A — oo. Note that this is in accord with
the results presented in chapter 5 for the exchange contribution to the HF energy
where the contributions are seen to become smaller as A is increased.

6.2 Asymmetric nuclear matter

In asymmetric nuclear matter the proton and neutron densities are not equal. The
asymmetry is characterized by the quantity I, defined as
N—-Z

[=—= (6.17)

6.2.1 Density

The proton and neutron densities are defined in terms of the I parameter as

1 1
pp = —5(I=Np=5(0-Dp (6.18)

- %(1 +Dp. (6.19)

In addition, the relation (6.5) between density and Fermi momentum may be
derived for the case of a proton and a neutron Fermi momentum:

K )

v = 33 (6.20)
k3

pn = 35 (6.21)

Note that these expressions differ from Equation (6.5) each by a factor of two since
there is not a sum over the isospin.
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6.2.2 Kinetic Energy
Now the kinetic energy is the sum of proton and neutron kinetic energies:
KF(p)

K
1 iker ]:sz2 — iker ﬁzv2 ikr
T = Z\—/J'd3rekx‘;<2mp> G+Z Jd3rekx‘;<2mn>ekxa

ko

FLkZ v R2)2
Z — 2m,
= 2 —ﬁ Jkﬂmk“ v
(27)3 2my, Jo (271)3 2m,,
2
2 V., Wy 2 vV, Bk,
5(2m)3  2m, 5(2m)3  2m,
R? 3 5 R? 3

_ 32 12/3.3 (3702303 22
V2mp5(37r) Py + V3 —5 (37 (6.22)

kF(n
J k* dk4n

and the kinetic energy per particle is

T R*3 . ,,53V R 3 23 3V
A =m0 xt m, 557 PR
R 3 i R o
= — T (3m?)P22 )3 6.23
2%5(3 ) > +2mn5(3 ) 5 (6.23)
which is expressed in terms of the I parameter as
T ﬁz 23 1 5/352/3 1 ﬁz 23 U 5/3.2/3
1 1
= cpmﬂ I)5/3p2/3+cn25/3(1 +I)5/3p2/3 (6.24)

6.2.3 Potential Energy

The zero result for the exchange term in the case of symmetric nuclear matter was
due to the exchange of the space coordinates. The character of the space partin the
isospin-dependent term is exactly the same and the result is similarly zero. In ad-
dition, then, to the isospin-independent parts of the monopole interaction, there
is an additional direct contribution from the “b”-terms of the isospin-dependent
part of the force. The energy due to this term is

1
Ep=) Wibfae D ) (AulpPepPimimaiu) (6.25)

E=a,r kaoaTh kpopty
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In the case where T\ = 1, = q the energy is

1 k<kr(q) 2
Eqq = ZZW‘gbgffXa > Je“"rpﬁﬁe“"rd%
E=a,r ko
ke (q) z
= ) 2Wib v lptPee | Y
&=a,r k
\V4 KF(a) 2
= 2Web V- pPPeee (—4nJ k? dk)
1 23— 1.6
= ) T3, Y Webep Pk g
E=a,r
1 —X
= ) g VWibep™ e (37pg)?
E=a,r
1 —
= ) 5VWibep™ (o] + p7) (6.26)
E=a,r

and in the case 1) # 1, the combined action of the isospin operators gives a neg-
ative sign:

: k<kq k<kp(q)
Eqqg = — Z ngbaf% (Z J'ek'rpﬁaeu"r d3r> Z J'ek'rpﬁaeu"r d3r

&=a,r ko ko

KF(q) kr(a)
= ) 2Wib v lpthee (Z 1) (Z 1)
k k

&=a,r
\V4 Kr(q) \V4 kr(a)
= - Wb,V Tp2Pe-ae (—4nJ K2 dk) ( 471J Kk? dk)
a_Z et P 2r? ", 2r ",
= — ) VWb p® p,p, (6.27)

&=a,r

Then the total energy due to the isospin-dependent term is

1 —
Ep = azZarEngapZB& £V (pp — pn)? (6.28)
and the energy per particle is

1
Ep/A =Y SWebep™ 1 (o, —pn)°. (6.29)

E=a,r
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The energy per particle of asymmetric nuclear matter, in terms of the total density
and the asymmetry parameter I is:

1 1
n(p,I) — Cpﬁ(] - 1)5/302/3+Cnm(1 + 1)5/3p2/3

1 1
+ _Waplﬁqfocq—l-] + _erZBTfOCT—H

2 2
1 1
3 Wabap™ e I 4 SWibyp?Prer I (6.30)

6.3 Observables

6.3.1 Symmetric nuclear matter

As a function of the density, the energy per particle in nuclear matter for a physical
system has a minimum at the saturation density (p,) with a value . The observed
value of n = E/A at saturation density is determined from the liquid drop model
to fits of a large number of finite nuclei and is taken to be[22]

Eo = —16.0 £ 0.2 MeV. (6.31)

One may expand the function n = E/A about this minimum point:

o (p—po)* 9™
= —0p) — AL . 6.32
Po Po
For the state of density p to be a minimum the first derivative must be zero. The
physical parameter proportional to the first derivative is the pressure

oM ,0m
p—_9n_ 20n 6.33
ov P op ( )

where v = 1/p is the volume per particle. The expression for the pressure in
symmetric nuclei is

2 1 1
P= gakp5/3 + Ewa(zﬁa — Xq t+ ])pZBafocq-)—Z + EWr(ZBr — O+ 1)p26r7m+2- (634)

The quadratic term in the Taylor expansion is identified as the incompressibility,
K,
0’
K=90"——| . 6.35
Po
K is a measure of the energy needed to produce a density change in the nuclear
matter. Its value is not well known, but is inferred from those excitation in finite
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nuclei which correspond to density fluctuations (the breathing mode) to be 210420
MeV[85]. A generalized K(p) may be defined for non-equilibrium densities [22]:

0°n P
K =9p>—— + 18— 6.36
P o0z T 185 (6.36)
where P is the pressure as defined above. Evaluated for the force in this thesis,
the generalised incompressibility is

9
K = *za—kPZ/3 + zwa(zﬁa — Xq T+ 1)(2[3a o O(a)ngaioca-’_1

P
b OOWL2B o 1)(2B, o 18 (6.37)

6.3.2 Asymmetric nuclear matter

Aside from the leading term in the Bethe-Weizsacker mass formula, the asymmetry

term also has an A-dependence such that it should be finite in asymmetric nuclear

matter. Its form is

(N—2)
AZ

and the parameter ag, like the leading term E, above is fitted to a large number of

observed binding energies. This coefficient is identified in the expression (6.30) as

Nlasym = @s (6.38)

_ 1o,
T2
Typical values for this parameter range from 18.6 Mev [77], to 23.7 MeV [78],

to 33 MeV [79], the last value being the most recent. For the present case, the
separable interaction gives for ay:

(6.39)

5 2/3 5 2/3
PSR P
367111/

as

] ]
— s + s Webp®Pe et 4 Wb p?Prertl o (6.40
36T 1A 2" aleP TyWibee (6.40)

At I = 0 this expression becomes

as = %cppz/3 + %cnpz/3 + %Wabapzﬁ“f"‘*r1 + %Wrbrpm*“*“. (6.41)
In addition one may consider the equation of state for pure neutron matter
(I =1). Although no observables as such are known, due to the fact that neutron
matter is not bound by nuclear forces, this very fact may be used as a condition, i.e.
neutron matter should not be predicted to be bound by the model. The binding
energy of neutron matter is given from Equation 6.30 with I =1 and p = py:

1 1
n =cn2?3p%3 + 51+ bo)WpaPe et 51+ b, )W, paPrer ! (6.42)
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6.4 Results

Results are presented for the parameter set used to fit finite nuclei. This values of
the parameters are given at the beginning of the next chapter.

The curves of energy per particle in symmetric nuclear matter (SNM) and Pure
Neutron Matter (PNM) are shown in Figure 6.1. The equilibrium point for sym-
metric nuclear matter occurs at py = 0.155 fm—3 with an energy per nucleon of
—15.56 MeV. This compares favourably with the inferred experimental[22] values
of —16.0 £ 0.2 MeV at a saturation density of py = 0.16 + 0.005 fm—3, especially
when one considers that the force parameters used were fitted to finite nuclei.
In addition, different mass formula fits to the data give slightly different “exper-
imental” results for nuclear matter properties, so, for instance, a recent paper of
Heiselberg[86] gives no = —15.6+ 0.2 MeV and they consider the value of the sat-
uration to be more uncertain, at py = 0.16 + 0.02 fm 3. The curve for PNM shows
the result that neutron matter is unbound at any density and everywhere less sta-
ble than symmetric matter, as it should be. This is in contrast to most Skyrme
interactions fitted to finite nuclei which have PNM more stable than SNM above
a threshold density which may be quite low (~ 0.4 fm 3 in the case of the force
parameterisation SIII[22]).

40 T T T 7 T T T

y —— SNM
’ ——- PNM

30

n [MeV]

p[fm™

Figure 6.1: Energy per particle in Symmetric Nuclear Matter (SNM) and Pure Neutron
Matter (PNM). The saturation density is py = 0.155 fm—3 and the energy per nucleon at
saturation is —15.56 MeV.
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Force Separable SIII[80] SGII[81] SkM*[82] SkP[83] T6[84] SLy230a[22]

Po 0.155 0.145 0.158 0.160 0.162 0.161 0.160
kr 1.319 1.201 1.328 1.333 1.340 1.355 1.133
To 1.155 1.180 1.147 1.143 1.137 1.141 1.143
Mo -15.56 -15.85 -15.59 -15.77 -15.95  -15.96 -15.97
Koo 218.2 355.4 214.6 216.6 201.0 135.9 229.9
mi,/m 1.0 0.76 0.79 0.79 1.0 1.0 0.695
ag 36.90 28.16 26.83 30.03 30.00 29.97 32.01

Table 6.1: Properties of infinite nuclear matter at equilibrium for the separable inter-
action used in this thesis as well as some typical Skyrme interactions. The observables
are the equilibrium density, po [fm 3], the Fermi momentum, kr [fm '], vo = (97m)"/3 /2k¢
[fm] is the mean distance between two nucleons in the fluid, ny [MeV] is the energy at
saturation density, K, [MeV] is the incompressibility, m*/m is the effective mass and a,
[MeV] is the asymmetry energy.

A comparison of various observables between the selection of Skyrme forces
used in the paper of Chabanat et. al.[22] and the separable force of this thesis
is presented in Table 6.1. The first five Skyrme parameterisations listed were
chosen to be a representative sample and the final one, SLy230a was the result of
fitting to neutron-rich neutron matter and neutron star properties. Most of the
observables compare favourably with those of the best Skyrme parameterization
listed, SLy230a. The asymmetry parameter is perhaps too high, but it is closer to
the value of that for SLy230a than the other listed parameterisations.

6.5 Neutron Star

One possible result of the collapse of a normal star at the end of its life is the
formation of neutron star. Radio pulsars such as the object in the remnant of
the Crab supernova are believed to be such stars which begin their life rotating
rapidly but slow down rather quickly due to their high magnetic fields. The sup-
posed structure of a neutron star is shown schematically in Figure 6.2. It is from
the equations of state (EoS) of the realisticinteractions that this picture is inferred
and although the detailed results differ as one considers different models and in-
teractions, the general features are the same. At the surface the density is only on
the order of ~ 10 g cm—3, which is about the same as ‘normal’ matter. The density
rises rapidly through two layers of crust to ~ 2 x 10" g cm 3. The outer layer of
crust consists of a gas of nuclei and electrons. Above the neutron drip density
~4 x 10" g cm—3 the gas is supplemented by neutrons to form the inner crust. At



CHAPTER 6. NUCLEAR MATTER AND NEUTRON STAR CALCULATIONS 64

Outer crust:
nuclel + e

Inner crust :
nuclei, neutrons + e-

Uniform nuclear matter
n+p+e +y

14
2x10 gcm

4 x 10ug cm’

Figure 6.2: Schematic view of the possible structure of a neutron star showing regions
where nuclei and nuclear matter dominate. The central region may be quark matter.
Figure is take from Ref.[86]

greater densities, from about ~4 x 10" g cm 3 to ~ 10" g cm3 the star consists of
homogeneous nuclear matter with electrons and, above the threshold density for
their creation, muons. At higher densities, in the core, hyperons may appear, or
even quark matter. Since the interaction under study is between nucleons only,
the npeu region is extrapolated to the core. This is the technique adopted by
Chabanat et. al.[22] and Wiringa et. al.[87].

In this section, the usual notation for describing neutron stars is used, which
is somewhat contrary to the usual nuclear physicist’s notation for nuclear mat-
ter. The number densities are written as n,, n, and n,, for baryons, protons and
neutrons respectively. The symbol p is used as the mass density.

To describe a neutron star’s properties an equation of state is derived which is
the pressure as a function of the density

2 dfe/my) (6.43)

P(nb) — Tl'b dnb

where e is the energy density, and is related to the mass density p(ny) = e(ny)/c?.

The equation of state is derived in Appendix G.
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EOS Separable SLy230a SLy230b Separable SLy230a SLy230b
configuration Mmax Mmax Mmax 1.4Mg 1.4Mg 1.4Mg
ne (fm=3) 1.14 1.15 1.21 0.459 0.508 0.538

pc (10 gecm™3) 26.6 26.9 28.5 8.43 9.25 9.85

R (km) 10.3 10.25 9.99 12.1 11.8 11.7

M (Mg) 2.02 2.10 2.05 1.40 1.40 1.40

A (10%7) 2.80 2.99 2.91 1.84 1.85 1.85
Eping (10°3 erg)  5.69 7.07 6.79 2.34 2.60 2.61
Zsurf 0.539 0.591 0.593 0.233 0.240 0.244

Table 6.2: Parameters of the neutron star models. n. is the central number density and
is the independent variable in the equation of state. p. is the central mass density. R
is the radius of the star, M is the mass in units of the solar mass. A is the number of
baryons. Ey;,q is the binding energy of the star and zg, is the gravitational red-shift (see
ref [22])

The calculation of a neutron star in this work is valid for non-rotating neutron
stars. This is necessary for a simple calculation to be possible, and thanks to
the Hubble telescope a non-rotating, non-accreting neutron star has actually now
been observed due to its thermal emission alone[88]. For such a non-rotating
star, Tolman, Oppenheimer and Volkoff (TOV) derived an equation of hydrostatic
equilibrium[89, 90]:

> P
% _ G:;,p (1+ p])(;G:: m?) (6.44)

with

m(r) = J; 4rerp(r) dr. (6.45)

To solve these equations the following procedure is used:

e A central density, p. is chosen. This gives from the EoS the central pressure,
P.. The boundary condition m(r = 0) = 0 is chosen.

e The TOV equation, (6.44), and the mass relation (6.45) are integrated nu-
merically out from r = 0. This yields at each step a pressure, P(r), given by
the EoS.

e The condition P = 0 defines the surface of the star, at which r = R is the
radius and m(R) is the mass.

With this prescription the TOV equation is solved for a number of central densi-
ties. A consequence of general relativity is that a maximum mass exists for the
star. Results for some observables are shown in Table 6.2 for the maximum mass
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Figure 6.3: Gravitational mass in units of solar mass of neutron star as a function of the
central baryon density. Solid line is for the separable interaction in this thesis and the
dashed line is for the Skyrme parameterisation SLy230a[22].

star and for a star of mass 1.4M., which is a commonly chosen benchmark in the
literature. The results for the separable force are compared with results from Cha-
banat et. al. [22] which are for Skyrme force parameterisations fitted to nuclei at
the extremes of density and isospin asymmetry.

Figure 6.3 shows the mass of the neutron star as a function of the central baryon
density. The conclusion from these results is that the separable interaction gives
rather similar results to the best Skyrme interactions used for neutron star calcu-
lations. The Skyrme forces to which the separable interaction is compared were
themselves compared[22] to the “realistic” calculations of Wiringa et. al.[87]
and found to be very similar. The separable force, then, predicts similar neutron
star properties to other contemporary models, using both realistic and effective
interactions.

Figure 6.4 shows neutron star binding energy as a function of mass. The box in-
dicates the measured mass and binding energy, based on observed energy release,
of the neutron star which presumably was created in the supernova 1987A[91].
The separable force calculations are consistent with this observation since part of
the curve lies within the box.
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Figure 6.4: Binding energy of a neutron star as a function of its mass. The box represents
the possible values for the neutron star created in Supernova 1987A.

6.6 Perturbation Calculations

So far the treatment of nuclear matter has been at the mean-field level with the
single-particle states being plane waves. One would also like to calculate the cor-
rections to this approximation since they could be quite large, particularly in the
case of hard-core potentials. The usual approach taken in these cases is to in-
clude all the ladder diagrams which is facilitated by solving the Bethe-Goldstone
equation[92, 36]. In the case of the separable interaction, the following remark-
able property holds: In infinite nuclear matter the solution of the HF equations
represents the exact ground state. To see this, one notes that the correlations to

Figure 6.5: Insertion appearing at the bottom of every Hugenholz diagram for the vac-
uum amplitude.
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the ground state energy can be described in terms of Hugenholz diagrams (See
Appendix D). Following the rules given in the Appendix, one finds that all dia-
grams must include the insertion shown in Figure 6.5. This follows from the fact
that a diagram must have a lowest dot, in the sense of being at the bottom of the
diagram (i.e. earliest in time-ordering). Since four lines must leave this dot and
they must connect to others, each of the lines must move upwards. Furthermore,
by the rules of labelling lines, two of them must enter the dot and two must leave,
so two are hole lines and two are particle lines. The matrix element associated
with this dot is then

(ab|Vlrs) (6.46)

with a and b representing hole states and r and s representing particle states. Due
to the nature of the separable interaction, the matrix element becomes

(ab|Vlrs) o< ((alp®Ir)(bipPls) — (alpPls)(blo®Ir)) (6.47)

which is zero since the density is just a constant in infinite nuclear matter and each
hole state is orthogonal to each particle state.



Chapter 7

Ground-State Properties of Nuclei

This chapter presents results for a set of parameters fitted according to the pre-
scription of Chapter 3. All Hartree-Fock calculations are performed in a basis with
12 radial states per angular momentum state and iteration continues until the HF
energy has converged to 10keV. The resulting set of basis states then forms the
reference state used in the perturbation calculation. Since ample experimental
data exist for finite nuclei, unlike infinite nuclear matter, the emphasis is on com-
parison to experimental data rather than to other interactions.

7.1 Force Parameters

The parameters for the monopole force are presented in Table 7.1. The higher
multipole parameters are not included in this fit since their main contribution is
to excited states and to deformations and fixing the parameters to a fit to ground-
state properties of spherical nuclei is not appropriate. Some discussion of their
possible role in the region of this fit is given.

W, Kq Ba a, b,
-1543.8 MeV fm? 2.0 1.0 -0.4295 -0.419825
W, Xr Br Qar b,
1778.0 MeV fm3-82>  2.2165 1.246 -1.4788 -0.314625
C k
160.0 Mev fm® 16.0 Mev fm'°

Table 7.1: Monopole force parameters

69
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7.2 Nuclear Energies

The nuclear energies per particle of the nuclei in the fit are plotted in Figure 7.1
in the HF approximation and compared to the experimental results. Most of the
experimental data are taken from Ref. [93] and have an experimental error of
300 keV or less, which makes the error bar smaller than the symbol on the plot
in all cases. The value for '°°Sn was recently measured at 825.8(9) Mev[94]. The
data for *8Ni is extrapolated from a systematic study and is assumed to have an
error of only about 200 keV [97]. The value for 7Ni is also an extrapolated value.
The contributions due to the perturbation theory are not shown in the figure since
they are rather small and would not be readily distinguishable from the points for
the Hartree-Fock energies for most of the nuclei. They are presented in Table 7.2
along with the experimental values.

The calculated energies are seen to follow the same trends as the theoretical
curve, although there are some notable exceptions. '°O is clearly very under-
bound. Owing to the fact that the centre-of-mass correction is not treated, one

9 1 1 1 1
85
8 |
% |
2,
p 75
7 |
| ¥—xX Hartree—Fock |
O - -- O Experiment
6.5 —
. | . | . | . |
50 100 150 200
A

Figure 7.1: Binding energy per nucleon in HF approximation
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Nucleus  Epr E2 35 ES) Eol Enre2es K Expt.
60 -109.32 -3.31 -0.1365 -0.3624 +0.921 -112.21 0.063 -127.68
34si  -280.88 -7.37 -0.0384 -0.4830 +1.223 -287.55 0.232 -283.43
40Ca  -334.53 -2.51 -0.0323 -0.1114 +0.233  -336.95 0.052 -342.00
4Ca  -417.01 -5.97 -0.0189 -0.2725 +0.273 -422.70 0.202 -416.16
#Ni  -360.69 -6.57 -0.0130 -0.2058 +0.427 -367.05 0.234 -348.33
56Ni -481.25 -2.31 -0.0210 -0.0643 +0.123 -483.52 0.046 -483.99
68Ni  -503.33 -6.00 -0.0109 -0.2091 +0.484 -598.85 0.221  -590.43
78Ni  -651.00 -8.34 -0.0053 -0.1458 +0.477 -659.92 0.342 -641.38
807r  -663.41 -1.87 -0.0087 -0.0411 +0.107 -665.22 0.044 -669.79
207y -782.70 -3.91 -0.0070 -0.1257 +0.103 -786.51 0.149 -783.89
1005y -825.65 -1.71 -0.0060 -0.0220 +0.048 -827.35 0.039 -825.80
1145n  _063.20 -4.04 -0.0046 -0.1093 +0.226 -967.12 0.162 -971.57
132§ -1097.65 -6.17 -0.0023 -0.0864 +0.200 -1103.70 0.287 -1102.92
146Gd  -1190.32 -3.42 -0.0026 -0.0699 +0.142 -1193.66 0.146 -1204.44
208ph  -1599.04 -4.51 -0.0013 -0.0664 +0.108 -1603.51 0.233 -1636.45

Table 7.2: Monopole Hartree-Fock energy and corrections from perturbation theory
compared with experimental value. All energies are in MeV

might expect to do quite badly in the lightest nuclei. On the other hand, typical
values for the centre-of-mass correction in 'O are about ten MeV[95] which is
about half the difference between the experimental and calculated value presented
here. Of course, one would need to re-fit the parameters in any case if the center-
of-mass correction were included. An alternative possibility is that the value of
the a-parameters are too large. From Fig. 5.3 it is seen that the contribution
to the HF energy from the exchange term proportional to the a parameters is
particularly large and positive for '°O. Its value is selected to improve the overall
fit, but it does so at the expense of the fit to '°O. A possible solution lies in the
multipole forces which for spherical nuclei act only in the exchange term which,
like the monopole terms, presumably is strongest in the lightest nuclei, the choice
of the A-dependent fp and fo parameters notwithstanding.

The quality of the fit elsewhere is much better, with the next worst case after
oxygen being *°Ca, whose Hartree-Fock binding energy is about five percent off
the experimental value. At the other end of the chart, 2°Pb is under-bound by
quite a large amount in terms of total binding, but is not as serious a discrepancy
in terms of energy per particle as in the lightest nuclei.

7.2.1 Perturbation Corrections

The smallness of the perturbation corrections in all the nuclei is notable. This
work was predicated on the premise that it would be possible to find an effective
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interaction which, when used in perturbation theory, would converge quickly with
small corrections on top of the mean-field, and this is certainly a character of
the chosen interaction. It is difficult to say how large the correlations ought to
be since, as was pointed out in Chapter 2, the size of the correlations depend
upon the efficacy of the single particle Hamiltonian. As a matter of comparison,
correlation effects in Skyrme interactions have been estimated to be order of about
ten MeV[96] for the total binding energy.

The A-dependence of the second order correction seems to be that the total
correction to the HF energy remains of about the same order for nuclei across
the periodic table. It has already been shown that the correction per nucleon in
infinite nuclear matter is zero so the corrections for any diagram in finite nuclei
must have an A-dependence weaker than o« A. The reason for the lack in increase
in binding energy correction in heavier nuclei may be explained in a similar way
to the zero nuclear matter corrections. In that case it was the constant density
which produced zero matrix elements. In the case of a heavy nucleus, the density
is quite constant over the interior and only changes at surface, which may be of
about the same width as in a light nucleus. In this way, the correlations may be
seen as predominantly a surface effect, even though the force acts equally strongly
over all ranges in the nucleus.

In addition, the corrections from perturbation theory are seen to be greater in
N=#£Z nuclei. From the discussion of the isospin-dependent term in Chapter 5, the
reason for this is known to be that in N+Z nuclei the isospin “flipping” operator,
{1, + 7,15, allows excitations in the same major shell to occur which give a large
contribution. It is presumably not the case that N=Z nuclei in fact have less cor-
relation energy than N+#Z nuclei so it may be necessary to consider reducing the
strength of the isospin-dependent terms, although this would reduce the overall
quality of the fit. On the other hand the inclusion of multipole forces which al-
low for a much broader range of excitations than the monopole force alone should
smooth out these differences and increase the magnitude of the correlations.

In addition to the size of the correlations, the sign is also interesting. The sec-
ond order correction is always negative definite but higher order corrections may
be of any sign. In the third order the largest, by far, diagram — the particle-hole
diagram - is always seen to be positive. This is in accord with studies of correla-
tions with other forces [54, 96]. That it is the largest contribution suggests that
long-range correlations are the most important effect arising from the monopole
interaction.

7.3 Charge Radii and Densities

The root mean-square charge radii for the nuclei in the fit are given in Table 7.3
along with experimental data for those nuclei where it exists. The agreement with
experiment is seen to be very good, with the main exception being 'O, in which
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Nucleus rg HF (fm) 1o, exp (fm)

TeQ 2.85 2.69
3G 3.19

0Ca 3.54 3.48
BCa 3.47 3.48
BN 3.88

56N 3.84 3.78
68N 3.89

78Ni 3.87

807p 4.33

07r 4.29 4.27
100G 4.60

1148n 4.65 4.60
1326n 4.60

14eGd 5.02 4.96
208ph 5.50 5.50

Table 7.3: Root mean-squared charge radii in HF approximation and experimentally.
Experimental data is from [99]

the erroris about 5%, which is rather less than the error in the binding energy. The
results are also displayed graphically in Fig. 7.2. The radii seem, in general, to
be better reproduced than the binding energies, although data is not available for
some of the more weakly bound nuclei presented. The radii for the under-bound
light nuclei are somewhat too large, which is what one should reasonably expect
to accompany under-binding. The relative good quality of the charge radii over
the binding energy suggests that the single particle properties are comparatively
better reproduced than many-body properties in the HF approximation.

Figures 7.3-7.17 show the point neutron, proton, charge and total densities
for all the nuclei under consideration. In all plots, the total point density is the
same on both sides of the y-axis. The left-hand side also gives the neutron point
density and the right-hand side shows the proton point density as well as the
charge density and, in cases where data is available, the experimental data.

The experimental data for the charge density is from the Fourier-Bessel de-
composition in table IX of Ref. [99]. Even for those nuclei for which no data is
available, the densities are plotted since they have a direct physical interpretation
and they play an important role in the present interaction.

As shown by the moderate error in the charge radii, there is a visible discrep-
ancy in the charge densities of '*O and “°Ca, particularly in the central region,
though the error in the Fourier-transformed experimental data is the greatest in
this region. This error should probably not be taken too seriously since no centre-
of-mass correction is taken into account. The scale on all the plots is the same
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Figure 7.2: Mean squared charge radii in HF approximation and experimentally. Exper-
imental data is from the same reference as Table 7.3

and it is easily seen that the central total densities for all the nuclei lie around the
expected region of ~ 0.16 fm—3.
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7.4 Form factors

The charge form factors are shown for those nuclei where experimental data is
available, namely '°0O, %°Ca, “8Ca, “°Zr and 2°®Pb. The position of the first zero is
clearly moves lower in momentum as Z increases, showing the increase in radius.
As one would expect having already seen the fits to the densities, the quality of
each fit to the Fourier transforms of the density are roughly equal in quality to
the fits to the density. They are presented along with the densities since they are
directly related to the experimental observables, as mentioned in Chapter 5.
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Figure 7.18: Charge Form factor in '°O
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Figure 7.20: Charge Form factor in *8Ca
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7.5 Single-Particle energies

Calculated single particle energies are shown in Figures 7.23-7.28 compared to
experimental data, taken from Refs.[21] and [97]. Only the nuclei for which ex-
perimental data were available are plotted, except °Zr for which neutron data are
available. The position of the fermi level is indicated by the encircled number,
which itself shows how many particles occupy the levels up to that point.

Firstly, one notes that the N, Z = 8 shell closures in '°O are somewhat poor, as
is the 20 particle shell closure in “°Ca. This appears to be due in part to the overly-
deep binding of the ds,, state above the N, Z = 8 shell and the f;,, state above the
N,Z = 20 shell. The occupied states nearest the fermi level appear also to be
pushed up, but given the underbinding in these light nuclei, the excessive depth
of the unoccupied levels seems more remarkable. The effect does not take place
for the N, Z =12 or N, Z = 28 gaps. The fact that the pushed-down states are the
lowest states of their given angular momentum may be of some significance. Since
the monopole force only involves interactions between single-particles and other
single-particles with exactly the same angular quantum numbers, the set of states
of a given angular momentum for which not even the lowest N-state is unoccupied
feel the exchange interaction differently to those states in which at least one state
sharing angular quantum numbers is occupied. This effect was noticed earlier in
Fig. 5.15 where it was seen that 0f;/, and 0fs, states in “*Ca had different single-
particle energies in the absence of the spin-orbit force. Alternatively, since the
smallness of the Z = 20 gap in *®Ca is not so extreme, and the N = 20 gap in
34Si is quite satisfactory, it could be that the problem is something to do with the
properties of N = Z nuclei.

In the heavier nuclei (*?Sn and 2°Pb) the level densities and shell gaps cor-
respond much more closely to experiment than in the lighter nuclei. A possible
factor here, as elsewhere, is the omission of the centre-of-mass correction is neg-
ligible in the heavy nuclei but not so in the lighter. Some of the details of the level
ordering for neutron states in '*’Sn is seen to be at odds with experiment. It is
noted that this is a common feature of Skyrme mean-field calculations[97].

The results in the light nuclei are similar to those in a recent work by Brown[97 ]
in which a Skyrme paramaterisation was fitted to, amongst other things, the single
particle spectra of light nuclei. He attributed the too-small gap in '*O and *°Ca
as being due to not considering correlation effects in which single particles are
excited across the gap. A calculation with just the monopole force alone would
not account for the lowest energy excitations, but the quadrupole force might
improve matters if its contribution to the mean-field is calculated, or it is used to
evaluate corrections to the single-particle energies in perturbation theory.
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Chapter 8

Summary and Conclusions

A density-dependent separable multipole interaction has been presented and used
in calculations of even-even spherical nuclei in the Hartree-Fock approximation
on top of which corrections to third order in the energy have been calculated. In
addition, the properties of symmetric and asymmetric nuclear matter have been
studied as well as those of a neutron star.

From calculations of the perturbation series, it is found that the interaction
is weak and the first terms in the perturbation series are small and appear to
converge quite rapidly.

An approximate fit of the force parameters has been made to the ground-state
properties of finite nuclei and the single-particle observables (single-particle en-
ergies and one-body densities) agree well with experiment. The agreement of the
HF energy is quite reasonable, but not of the same quality as contemporary ef-
fective interactions used in HF models. However, this work represents the most
successful application of the standard perturbation theory calculation in nuclei,
improving quite significantly on the quality of the results compared to previous
calculations, which were discussed in Chapter 3.

A deficiency of the present calculation is the uncertainty over the multipole
parameters. Since the multipole effects manifest themselves in such ways as de-
formations and excited state spectra, it is not possible to determine their strengths
with the calculation of the ground states of spherical nuclei. The next step there-
fore is to perform calculations of deformed nuclei to fit the multipole parameters
and to develop techniques to calculate excited state properties using perturbation
theory.
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Appendix A

Hartree-Fock Equations

The Hartree-Fock (HF) approximation is based on the idea that a system of inter-
acting fermions may be described as a system of fermions moving independently
in a one-body potential. This “mean field” is supposed to describe the average of
the interactions of a given particle with all the others.

This mean field is represented by a one-body Hamiltonian, the HF Hamilto-
nian, the solution the one-dimensional Schrodinger equation with this Hamilto-
nian gives the single particle states which the fermions occupy:

Rur (x) = €i@i(x). (A.1)

To determine the HF potential one makes the ansatz of a Slater determinant
of the single particle wavefunctions for the many-body wavefunction:

e1(r1)  @i(r2) -+ @i(rn)
©2(r1)  @2(m2) -+ @2(rN)

O(ry---Tn) = : : _ : (A.2)
(PN-(Tl) (PN-(TZ) e N tTN)

and requires that the expectation value of the full Hamiltonian in this state be an
extremum. One thus varies this expectation value with respect to the set of single
particle wavefunctions and sets it to zero:

d

N
W ®\ﬂ|® Zeljdy(() ?(y)

i=1

—0 (A.3)

where the N Lagrange multipliers serve to ensure the normalization of the single
particle wave-functions. Note that the prescription for finding the HF Hamilto-
nian depends on the single particle wavefunctions which are its solution, so there
is a self-consistency condition which is usually dealt with by solving the HF equa-
tions iteratively. These HF equations are derived from the variational equation

01
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(A.3) by expressing the expectation value of the Hamiltonian in a Slater determi-
nant in second quantization notation:

N N

(@AID) = 3 (i) +3 Y v ) i, (A4

i=1 ij=1

where u is the one-body part of the interaction, including kinetic energy term,
and v is the two-body part. Using the result from functional calculus

doi(y)
d = dipd(x — A.5
a3 Sty = ot ) (A5)
the variational equation becomes
5 N
0 = dyei(y) u(y)l o;
Sorr | ) weity) vl o)

de ay ot (W)e! (W v(y, 1) 0s (W) @y ()

= o0+ Y [ duot ) o)

ov(y,y’)
Sy (x)

de dy' ot (u) @l (v) 0 (9)@:(U) — eo@u(x)
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by relabelling dummy indices and coordinate labels, the second and third and
the fifth and sixth terms are seen to be equal. Furthermore, expressing the one-
particle density and two-particle density matrix of a Slater determinant as

N
py) = ) @i(Weily)
i=1

N

puy) = D olv)eily)

i=1

the equation (A.6) becomes

€i@i(x) = [u(X)Jrdep(y)v(x,y)l cpi(X)dep(x,y)\)(x,y)cpi(y)
duly) 1 , ov(y,y')
+ de p(y)&pﬂx) + Zde dy’p(y)e(y) 50t (x)

1 : N vy, YY)
Zde dy'p(y,y')p(y ‘9)75@;;(@ - (A.6)

The first line of this equation is in the form of an eigenvalue problem and is the
standard Hartree-Fock equation. From it, a one-body potential may be defined:

Unir (x) 93 (x) = [u(x) +de p(y)v(x,y)] i) - J dy oy Weiy) (A7)

which is the Hartree-Fock potential. Note that it is inherently non-local in nature
thanks to the exchange term. In addition, if the potentials u(y) or v(x,y) depend
on the wavefunction - in practice this means dependent on the densities - then
the second and third lines of (A.6) are non-zero and there is a further contribution
to the Hartree-Fock potential, known as the rearrangement potential.



Appendix B
Many-Body Perturbation Theory

B.1 Hartree-Fock and Perturbation Theory

The Hamiltonian for a system of fermions interacting via one and two body inter-
actions is written, in the language of second—quantization

H= Z(alu\c> - Z (abf¥lcd)a abad (B.1)
ac abcd

Here the one-body part of the Hamiltonian is labelled u. The two-body part is

v and a' and a are fermion creation and annihilation operators respectively. If

one applies Wick’s theorem[100], which states that a product of operators may

be written as the sum of all contracted normal-ordered products, the Hamiltonian

becomes

1 1 1
H = Z(alu\c> {:ala.:+ala .} + 1 Z (abvcd>{ falaga,: —alay:ala,:

ac abcd
— . A — —
+ ala,:alag:—alag:ala,:+ala, :alay: —alazala, + aLaCaI,ad} (B.2)

where the colons (:) denote normal-ordering of the operators within them and the
braces denote contractions. Only contractions between a creation and annihilation
operator have been retained since all other contractions are zero in the case of a
sharp fermi surface, which is always true in the representation under consideration

in this work.
. '_| . . .
The contractions af,a. are zero if either states a or c are unoccupied and 8,

otherwise so the Hamiltonian reduces to

H = Z(hlu\h —I—Z (ahulc) : ala, —|— Z ab|Vied) : a abada

h<eF abcd
_ _Z Y~ (hbivlch) : ala, +4Z > (ahfch) :
bc h<er ac h<er
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1 . 1 )
4 Z Z (hblihd) : afa, : ~2 Z Z (ah[vlhd) : ala

bd h<er ad h<er
1 . 1 N
- 3 > (Rh'FIh'h) + > (hh'[Bhh’), (B.3)
hh’<€]: ]"Lh.’<€]:

where h represent hole states, i.e., states which are occupied in the representation
used. Since the matrix elements are anti-symmetrized and, using the symmetry
(abl¥cd) = (balv|dc), the Hamiltonian reduces to

H = Z(hu|h>+% > (hh'fShh’)

h<er ]"Lh.’<€]:

+ Z {{alulc) + (ahf¥lch)}: ala, :

+ lZ(ablvcd> afalaga, : (B.4)

abcd

Taking the expectation value of the Hamiltonian in the reference state |0) of oc-
cupied orbitals below the Fermi surface, only the terms without normal-ordered
products survive:

= (OHI0) = > (hiulh) + % Y (hh'[jhh). (B.5)

h<er hh'

The second line of Equation (B.4) describes a one-body field. It is written for in an
arbitrary Hilbert space representation and one is free to choose a particular basis.
A convenient choice is that which diagonalizes this single-particle Hamiltonian,
i.e.

(aule) + ) (ahfilch) = egdac (B.6)
h<er
which can be written as
(alu+ wlc) = €q0qc (B.7)
with the one-body field w defined as
(alwlc) = Z (ah[V|ch). (B.8)
h<er

Equation (B.6) is just the Hartree-Fock equation in second quantized notation.
This can be seen by taking equation (A.6) and acting left with [ dxZ(x):

b = [dxp (o) + [ax ey 3 o Wi, u)@ix)only)
h<er
- Jax]ay ¥ eimieumixvlenxely (B.9)

h<er
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which is just (B.6) in coordinate space, so that the Hamiltonian reduces to the
form |
H=Ey+ Z €q:ala, i+ 2 Z (abRled) : af afa,a, : (B.10)

a<er N abcd ,
VT - VT

Ho Hi

where a division of the Hamiltonian into parts labelled Hy and H; is given for the
purposes of performing perturbation theory.

B.2 Many-Body Perturbation Theory

Having partitioned the Hamiltonian into two parts, H = Hy+H; it is assumed that
the eigenvalue problem associated with Hy has been solved:

Ho| @) = W, | D). (B.11)

A parameter is separated out of the perturbing term: H; = AH; so that it can be
used to keep track of the order of perturbation theory. In the end it can be set to
unity.

The full Schrodinger equation which needs to be solved is

H[Wo) = Eo[Wo), (B.12)
for the ground state of the system. One has

Hi[Wo) = (H—Ho)[Wo) = (Eo — Ho)[Wo)
then (DolH1[Wo) = (DolEo — HolWo) = (Eo — W) (Do[Wo).

The energy shift, the difference between the exact and unperturbed energies is

thus
(DoH1[Wo)

(@o[¥o)

The operator which projects onto the ground state of the unperturbed problem is
defined as

P = [@0) (@, (B.14)

and its complement is

Q=1-P=) (0Nl (B.15)
n=1
This operator, Q commutes with H, so

(E—Ho)QIWo) = Q(E —Ho)Wo) = Q(E — Eo + Hy) W), (B.16)
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for an arbitrary number, E. Therefore

Q[Wo) = - HOQ(E —Eo + Hy)[Wo) = [Wo) — [Wo) (Do Do), (B.17)
then by defining
£ = Wo)
(DoY)
equation (B.17) becomes
1
&) = [Do) + T Q(E —Eo + Hy)IE) (B.18)
o— I'to

which can be iterated to give

) = 100)+ - QE  Eot Hi) {100 + - QUE Bt HIE-)
o 1 n
_ HZ_O EHOQ(EEO+H1)] Do) (B.19)

Using this in the expression (B.13) for the energy shift, one obtains

o -I n
(O (Oo/H E—Ey+H Dy). B.20
ol&) = nZ—o ol 1[E—HOQ( o+ 1)] @) (B.20)
This expression is true for any value of the number E. Setting E = W,, the ground
state eigenvalue of the unperturbed problem, the resulting expressions give the
Rayleigh-Schrédinger perturbation theory:

&) = le()] HOQ(WO—Eo-i-H])] Do) (B.21)
M=Z%M#ﬁ%hﬂ®& (8.22)

Note that by setting E = E, one obtains the Brillouin-Wigner perturbation series.
To obtain the perturbation series order by order, terms in (B.21) and (B.22)
are grouped according to the order of the coupling constant A. For the energy:

n=0: (olH; Do) ~ A (B.23)
1
1
= (OpHi——FQH; |®y) — (Op/H1 ——F QAE|D
(Do ]Wo—HoQ 11@0) — (Do ]Wo—HoQ Do)
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1 (o.9]
OoHj D) (OnHy|D
(ol 2 100 (@ulHil00)

= (Dy|H;|D,)
Z ot (@ |H4 Do) ~

= Wo—W
: 2
OoHy | —Q(H; — AE ()
(@oHy W07H0Q( 1—AE)| Do)
1 1
Oo/Hi—Q(H; — AE)——Q(H; — AE)|®
(Do ]WO—HOQ( 1 )W07H0Q( 1 )| @)
1 1
OoHy—————Q(H; — AE)————— QH;|®
(Do 1W0—H0Q( 1 )W07H0Q 1/@o)
1
1 1
Oo/Hi—Q(H; — AE O, ) (DO, |H|D
(Do 1W07H0Q( 1 )W0E0;| ) (@ |Hi | Do)
= 1
OoHi———Q(H; — AE) ———+—-~ | D) (D, |H4| D,
> (@ 1W0—HOQ( 1 )WO—WR‘ )(Qn[H1| D)

> 1 1
Y o (@oH, Wo— g QHIIPn)(@n[Hy o)
d 1

—AE Z<®0|H1 m‘(pnxq)n“_{l |®0>

> =W Mg T _— Z\@ D 1 [, )@, Hy Do)

—AE Z<(DO|H1 m‘®n><®n“—ll Do)
i o (Do[H| D) (O [Hy D) (D [Hy| Do)
(Wo— W) (Wo — W)

=1
= <(D0|H1|q)n><®n|H1‘(Dn>
Z (WO - Wn)z

(B.24)

which consists of a term of order ~ A3 and a term which contains all orders of ~ A3
or greater. Taking the terms by order in A the perturbation series for the energy

is

AE® =

AED = (Do[H;| Do)

i <(D0|H1 |q)n><(Dn|H1 ‘(D0>
Wo— W,

n=1
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— w (Do[H1| @) (D [He | @ ) (D [Hq Do)
ZZ (wo—wn)(WO—Wm)

—(@o[Hi|Do) <®°|H(‘V|31“z<$“';{‘®°>. (B.25)

n=1

The first order energy correction is zero for the present case, since the perturbation
is a normal-ordered product of operators which define the ground state in which
their expectation value is being taken.

The second order correction to the energy is commonly obtained by creating a
fictitious time-dependent problem in which the interaction H; is turned on adia-
batically so that the full solution is obtained at t = 0. This approach is detailed in
the textbooks[35, 39]. An alternative approach is to make use of the algebra of
second quantization. The second order energy is

AE@ — i<®OH1(DO><q)nH1(Dn>
WofW

=1

X |(Do[Hy|Dy)
Z' V\0/01| (B.26)

n=1

The state |®,,) must be of the form afala a,|®o), i.e. a state with two particles
excited from the HF ground state so that the matrix element (®y/H;|®,,) is non-
zero, H; containing two a-creation and two a-annihilation operators. To avoid
double counting, the condtitions

S>T> €f
a<b<er

apply. The eigenvalue of the unperturbed Hamiltonian of the excited state |®,,)
which appears in the denominator as W, is

Who=Wyo+e, +€— €4 €p, (B.27)

so that the second order energy correction is

2 )

a<b<ep T>S>€F

‘((DO\H1 alala,a,| Do)

€q+ €y —€r — €

‘ 2

(B.28)

To evaluate the matrix elements a new set of creation and annihilation operators
is defined whose action on the true vacuum |0) is the same as the of the a operators
on the Hartree-Fock ground state |@,):

f10) a>e€
D _ CalY), F
Aa|o) { cq|0), a< €r
cal0), a>er

(O — ~
@l @o) { ch[0), a<er



APPENDIX B. MANY-BODY PERTURBATION THEORY 100

so that the matrix element, with the normal-ordered product of operators is (see
(B.10))

- Z aBVyd) (Dol : a aﬁaba clclczc 10) (B.29)
aﬁyo
The matrix element will be non-zero if when translating the bra side to the c
representation, four c-annihilation operators are produced. This means that «
and B must be hole states in the HF representation and y and & must be particle
states: |
1 Z Z (B ¥lyd) (Oleacpescyciciclcl|0) (B.30)
xB<ef yd>erF
Since « and 3 are hole states and a and b are hole states, and the other operators
pertain to particle states, the matrix element of the c-operators can be separated

as
(Bleacpctcl 10)(Olescycict|O) (B.31)

The fist matrix element here will be unity if b = « and a = 3 or —1 if a = « and
b = B. This can be written as a generalized antisymmetric delta function:

" s o Spa O
(Olcacpeichl0) = 855 = ‘ 5B ;: = 853a0ub — 0pbOxa (B.32)
so that the matrix element (B.30) becomes
1 i a TS o
(Do Hyalala, a,|@g) = 2 Z (oc[S\v\y&éBgéyé = —(ab[Vlrs). (B.33)

xByd

Hence the second order energy correction is

~ 2
Z Z ab|\)|TS>| (834)
€a + €p — € — es

a<b<ep T>S>€r

Note that the numerator is always positive definite and the denominator is neg-
ative, so the second order energy correction always lowers the total energy from
that of the Hartree-Fock result. It is often convenient to remove the restrictions
a < band r > s. For each removal one doubles the set of states being summed
over, so an extra factor of 1/2 is needed. The extra restrictions a # b and r # s are
taken care of since the pairs of labels appear together in a bra or a ket and also
in the energy denominator, although this is only true for second and third order
diagrams. The second order energy then may be written

Z Z ab‘\)h”s | (B35)
€a + €p — € — es

ab<e1: TS>€F
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A dimensionless quantity related to the second order energy correction is the so-
called “wound integral”, «[101], defined by

R |(abl¥|rs)|?
=32 2 leq + € — € — &2 (B.36)

ab<efp TS>EF

It is always positive and represents the number of particles in the wavefunction
which are not in the ground-state Slater determinant.

This same procedure can be used for evaluation of higher order energy cor-
rections and wavefunction corrections[54]. A more convenient method has been
developed for the purposes of writing down the expressions for perturbation the-
ory which is dealt with in the next Appendix.



Appendix C

Hugenholz Diagrams

C.1 Introduction

In 1949 Feynman found that perturbation series encountered in field theory
could conveniently be represented diagramatically[102]. Following this lead,
Goldstone[103] and Hugenholz[61] both used similar diagrammatic techniques
in the treatment of many-fermion perturbation theory. Either set of diagrams
may be used to calculate observables, but in this work the Hugenholz diagrams
are used since for a given order of perturbation theory there are fewer diagrams
to write down. The diagrammatic series for the ground state energy calculation is
presented here.

C.2 Unlabelled Diagrams

For a given order, N, of perturbation theory, one draws N vertically ordered dots
and then connects them up with lines in all possible ways subject to the following
conditions:

e Each dot has four lines emanating from it
e Each diagram is topologically distinct
e Each diagram is linked

e No line connects a dot with itself

The first requirement is a consequence of the perturbation term consisting of a
two-body interaction. The second conditions ensures that diagrams are counted
only once. The third is a consequence of the linked-cluster theorem which shows
that if a diagram consists of disconnected parts then each part will already have
been included in lower order diagrams and should not be included again. The final

102
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condition is a consequence of Brillouin's theorem and results from using the HF
basis as the reference state for perturbation theory.

Using these rules one can see that there is only one possible second-order
diagram, shown in Fig C.1. There is also only one unlabelled third order diagram
(Fig C.2) but there are 12 unlabelled fourth order diagram, shown in Figure C.3.

Figure C.1: Unlabelled second-order Hugenholz diagram

Figure C.2: Unlabelled third-order Hugenholz diagram

As one goes up in order of perturbation theory, the number of unlabelled
Hugenholz diagrams to be calculated increases rather dramatically. Following the
rules given in this section, one can develop an algorithm to count the number of
diagrams in each order. This has been done by the author for unlabelled diagrams.
Table C.1 shows these numbers. The large number of diagrams for higher orders
suggests that explicit diagram-by-diagram evaluation of the perturbation theory
will be impractical for systems in which the series has not sufficiently converged
by the fourth, or perhaps fifth order.

Order |2 3 4 5 6 7
Unlabelled Diagrams |1 1 12 148 3150 90075

Table C.1: Number of Hugenholz diagrams by order of perturbation theory

C.3 Labelled diagrams

Once one has an unlabelled diagram, each of the lines needs to be labelled before
it can be evaluated. Labelling consists of putting an arrow on each of the lines
either pointing up or down subject to the following rules:
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Figure C.3: Unlabelled fourth-order Hugenholz diagrams

&0 o (S)

e Each dot has two lines entering it and two leaving it.
e Each diagram is topologically unique.

An up-pointing arrow represents a particle state, which is to say a particle existing
in an orbital unoccupied in the reference state. A down-pointing arrow represents
a hole state, which is the absence of a particle in a state which is occupied in
the reference state. Each unlabelled diagram may have more than one labelled
representation. In the case of the second order there is only one, which is shown
in Figure C.4.

Figure C.4: Labelled second-order Hugenholz diagram

In third order, there are three distinct ways of labelling the unlabelled diagram,
shown in Figure C.5
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Figure C.5: Labelled third-order Hugenholz diagrams

The prescription for writing down the mathematical form of the energy contri-
bution from each graph is as follows:

e For each dot, write down a factor of an antisymmetric matrix element of the
interaction in the form ( label-in-1 label-in-2|V| label-out-1 label-out-2). The
ordering of the two “in” and “out” labels is not important here, although it
will affect a phase later on.

Between each successive pairs of dot, draw an imaginary horizontal line
and for each such line contribute a factor in the denominator of () epgles —

Z €particles ) .

e Sum each hole label over all occupied HF states, and each particle label over
unoccupied states.

e Multiply by a factor 1/2% where k is the number of equivalent pairs of lines
in the diagram. An equivalent pair is a pair of lines starting and ending at
the same dot, and pointing in the same direction.

e Include a phase (—1)*! where h is the number of hole lines and 1 is the
number of closed loops. A prescription for calculating the number of closed
loops appears below.

C.4 Second-order Energy Correction

Using the above rules, the expression for the second order ground state energy
correction, given in expression (C.4), can be written down as

(ab[V|rs)(rs|V|ab)
AE?) = —(—1)%" (a . C.1
Z Z a _I_ eb — 61‘ — e ( )

ab<efp TS>€F

To determine the number of closed loops, one writes down the series of matrix
elements in this expression and starting with the first one follows through all the
labels which appear in the same position on the other side of the matrix element
until one arrives back at the starting label. If any labels are not included in the first
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path, one starts on such a label and continues until all labels have been included.
The number of separate paths is then the number of closed loops.
In the above case, the matrix elements are

(ab\VITs> (TSN\ub),

so starting at a in the first matrix element, one proceeds:

VR VIR
(ab|V]|rs)(rs|V|ab), (C.2)

which is one closed loop a — r — a. Starting from the first “unused” label, b,
another loop exhausts the rest of the labels b — s — b:

<alL|V|ri>(rélV\ag>, (C.3)

so in this case 1 = 2 and the expression for the second order energy correction is

Z Z ab\Vlrs Ts\Vlab>. (C.4)

ab<er riser €a T €p—€r—&

This is exactly the same as the expression (B.35) derived in the previous Appendix.

C.5 Third-order Energy Correction

C.5.1 Hole-hole Scattering term

The first diagram in Fig (C.5) is called the hole-hole scattering term since the
matrix element associated with the middle dot has a hole-hole state both as the
initial and the final state. Following the rules to write down its expression gives

Z Z Z 4+ (ab|V|rs)(cd|V|ab)(rs|V|cd) (C.5)

a;éb<eF c#d<ef r#s>ef €a T € €& € )(Gc Tea— & eS)

The number of closed loops is evaluated as:
1 3 2

(ab[V|ts) (cd|VIab) (rsVIed) (C.6)

where the numbers indicate the order in which the arrows operate to form the
loop a - r — ¢ — a. A second loop exhausts the labelsb —+s —d — b,

1 3 2

(alL\V\ri)(ccli\\N/lalx<rL\\7\cé> (C.7)

so that 1 = 2 and the sign of the term is positive.
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C.5.2 Particle-Particle Scattering term

Following the same procedure for writing down the expression and counting the
number of closed loops, the second diagram in Figure C.5 is

ES}):% Z Z Z ( (ab|\7\rs>(rsl\7ltu>(tu\\7|ab> (C.8)

e Bl Gt €s)(€a+€ep— € —€y)

C.5.3 Particle-Hole Scattering term

The final diagram in Figure C.5 is

£G) _ Z Z (ab[V|rs)(cr[V|at)(st|V|cb)

. C.9
(ea+€p— € —€5)(ep+ €. — €5 — €) (C.9)

a#b#c<er r#s#Et>er

Note that there is no factor of 1/8 here since there are no “equivalent pairs”.



Appendix D

Harmonic Oscillator Basis

D.1 Uncoupled representation

The HF wavefunctions are defined by their expansion coefficients in a spherical
harmonic oscillator basis. The harmonic oscillator wavefunctions are separated
into radial and angular parts:

Gnjt(r) = Rur(1)Yim, (6, §), (D.1)
and are the solution of the Schrodinger equation
R o 1 2.2
72mv d)a(r) - zmw T d)a(r) - e(nljm)ad)a(r)- (DZ)

With spherical symmetry assumed the angular parts of the wavefunction are sper-
ical harmonics. The radial equation is analytically solvable to give

22U+ (2n 4+ 21 + 3)!! a2
Rui(r) = ( 2) MLa12(77/b%)e 302, (D.3)
b3/ {(2L+ 1)1}
where
h
b= — D.4
5 (D.4)

is the oscillator size parameter, and L, 11,2 is an associated Laguerre polynomial.
The ground state of the radial function is that which has n = 0. The full oscillator
wavefunctions (D.1) are orthonormal and form a complete set. The orthogonal-
ity in the angular coordinates and quantum numbers comes from the spherical
harmonics: } .
J sin®dé | dd Y7, (0,d) Y (0, d) = S dmm: (D.5)
0 JOo

and in the radial function
.

dr R ()R (1) = S (D.6)
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D.2 Coupled representation

Since the eigenstates of the single particle Hamiltonian are eigenstates of the total
angular momentum operator j2 and not the orbital angular momentum operator
12 it is useful to construct harmonic oscillator wavefunctions which share these
symmetries. This is achieved by coupling the spherical harmonic to a spinor to
give a spinor spherical harmonic:

Vi (8, %) = [Vim, (8, 0) ® x142], (D.7)

m

where the m without a subscript is the magentic quantum number associated with
the coupled angular momentum, and the symbol ® represents a tensor coupling.
Explicitly this may be written as

Pim(8,d,x) = Y (Imu 1/2mglim) Yim, (8, )x2? (D.8)

mymsg

where (lm; 1/2m,|jm) is a Clebsch-Gordan coefficient.
The orthogonality relations are, in the coupled case, the same for the radial
quantum number and, for the angular quantum numbers:

e 27
[ | sine de | do (0, 6103y (€,6,%) = Busdy S (D.9)

0 0

D.3 Radial Derivatives

The radial derivative of a harmonic oscillator eigenfunction is quite simple since
the derivatives of Laguerre polynomials are also Laguerre polynomials:

dL,141/2(1%)

dr = Ln71,1+3/2(1‘2) (D].O)
so that the derivative of the whole radial eigenfunction is

dRmi(x)
dx

a2 2r a2
= /\/<1T”Ln,1+1/z(1”2/b2)6 2 41t (ﬁ) Lo 1143/2(77/b%)e 202

T x>
—'Lri12(1/b7) <§) e 2"2), (D.11)

where N is the same normalization factor as in Equation (D.3).Thus any function
of the density or its derivatives may be evaluated exactly in terms of the harmonic
oscillator states.



Appendix E

Hartree-Fock Potential for the
Separable Force.

This appendix contains derivations of the Hartree—Fock energy, potential and ma-
trix elements for all the terms of the nuclear force used in the work.

The Hartree-Fock potential is obtained from a variation of the HF energy as
detailed in Appendix A.

E.1 Variational principle

The normal functional variation is employed, viz.

dez 204 (1) :dez 5 (r— X)8an (E.1)

Sy (x)

where a and b label all the good quantum numbers of a single particle state
(N, 1,3, m,T) and x and r are the three-dimensional spatial coordinates plus spin
and isospin coordinates. The wave functions, ¢ are the full single particle wave
functions, including radial and angular parts, as well as a spinor and an isospinor
The integral over x is really an integral over the continuous coordinates and a sum-
mation over the discrete ones and the Dirac delta includes a Kronecker delta for
these coordinates. For most terms in the derivation which follows, this notation
suffices and it is not necessary to break the wave functions ¢ up into their sepa-
rate parts. However, for the terms which include spatial derivative operators, it is
necessary to consider a variation acting only using the R part of the wave function.
This is possible to do due to the assumed symmetries of the HF wave functions
and the fact that only nuclei with completely full j-sub-shells are considered.
The appropriate variational principle is

; 1 1
Zdeszg((B :Zde;zs(rx)msab. (E.2)
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Here, the coordinates r and x are just the one-dimensional spatial coordinates. To
show that this is true, one can consider a simple potential, which is just a constant,
V(ry,12) = k. Then the energy from this potential is

2
E=k (J drp(r)) .

A single variation of which gives

5
% :kJ'drp(r)-J'drégg) :kAJdr ZS)

Then choosing X = ¢} (x):

J'd3T op(r) _ JdSTZ (PZ(T)(Pi(f)

S@f(x) = 3 (x)
— [ ¥ e - 05 = eulx) (E.3)
or X =R;(x):
001 [ ROIREODEY @)
[z = ¢ pu SRy (x)
= Jr2d1r Z (2j; 4+ 1)6wd' (1 — x)Ri(x)
Niii<er
= (2 + DR(X) (E.4)

where the dimensions of each spatial integration and delta function have been
made explicit. The two methods of variation then result in the same one-
dimensional HF potentials if the relation (E.2) is used. Of course, in the first case
one has still to perform the angular and dimensional reduction, which accounts
for these factors.

E.2 Hartree-Fock Energy

E.2.1 Monopole term

The monopole interaction is written in coordinate space as
V(r,r2) = Wafa,pPe(r1)pPe(r2) (1 + aa(ti 1, +7,13) + ba(T1212:))
+ Wifo pP(m)pP (1) (1 + ar (17 Ty +1718) + br(T12722))

0
PV o(n) V() + S22y g (E.5)
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The physical interpretation of these terms is discussed in Chapter 3.

Since the first two terms of the force are functionally identical terms, it will
suffice to go through the derivation for just one term. In what follows only the
expressions for the attractive part of the potential, with subscript a, will be de-
rived.

The energy contribution from this two-body force can be written

= 23 V) ) (E.6)

ij<es

Central term

The energy contribution from the “central term”, which is defined as that part of
the attractive force with no isospin operator, is

3 Y (IWafu 0P (0P (r2)) — 53 Y (WP (moP () (E7)

ij<er ij<er
The direct term in Equation (E.7) may be written

1

Wafa, | [ dridPraot(m)ofr2)pP (n)oP* (r2)g1ln ) r2)

ij<er

= JW. (Z [ e @rm)pﬁa(m@im)) (Z | d%z(p;‘(rz)pﬁa(rz)cpj(rz))

j<er

—

Wfa, Ng.* (E.8)

where the total density has been defined as the sum of the proton and neutron
densities as

pr) =pp(M)+palr) = D @iMei(+ >  olreir) (E.9)
iep<er ien<er
and
Ng, = JdSTpB““ (). (E.10)

We define N, similarly for the repulsive term parameters. The exchange term can-
not be simplified in terms of the one-body density. It may, however be expressed
in terms of the nonlocal density, which for nucleon species q is

ThTz Z (Pl T2)@i(T1) (E-ll)

i€qg<er
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and a total nonlocal density p(r;,m2) may be defined as p(ry,12) = pp(r1,12) +
pn(T1,72). The exchange energy then can be written as

1
—=Wfae JJ d>rid3rap (11, 12)p(12, T1) pPe (1) pPe (12)

2
_ %waf%mﬁa (E.12)
where the space part of the exchange integral has been defined as
Mg, = JJd3T1d3sz(T1,T2)P(T2,Tl)Pﬁa(ﬁ)pB“(Tz) (E.13)

with a similar definition for Mg, with the parameter §,.

Isospin-dependent term

To calculate the energy due to the isospin-dependent term of the monopole inter-
action, one needs to examine the properties of the isospin operators on the four
possible combinations of uncoupled 2-body isospinors. We represent a proton
state by the letter p and a neutron state by the letter n:

(aa(Ti T + 1775 ) + ba(TiT22))IpP) = balpp)

(aa(Ti Ty + T 13) + ba(T12T22))Ipn) = agnp) —balpn)

(aa(TT; + Ty 13) + ba(T12T22))Inp) = aulpn) — banp)

(aa(tiTy +1713) + ba(T12T2.)) M) = bgnn)

so that the following isospin matrix elements are the only ones which are non-zero:

(t1](aq (77, + 1775 ) + ba(T1212.))TT) = by
<T%|(aa(TTTZ + TTT;) + ba(leTZZ))|T:r> = _ba
(tT)(ae(T7T, + 1773 ) + ba(T12T2.))ITT) = @ (E.14)

where T may represent either a neutron or a proton, and T represents the other
nucleon species. To arrive at an expression for the contribution to the energy from
this term, the sum is split into terms with 7; = 7; and 7; # 7;. Firstly the direct
term:

1 ) L )

5 D (UiWafa pPe (110" (r2) (aa(T T + T 7T3) + ba(T12722)) i)
i,j<es

1

= yWabafa, ) Jd3r1<pi‘(r1)pﬁ°(n)<m(ﬁ) J d*ra@7 (r2)pPe (r2) s (r2)

T{="Tj

1 2 2

S Wabafe, (U d3rpﬁ°(r)pp(f)] + U d3rp'3“(r)pn(r)] )

1 )2

SWabafe, (NE+ NG, (E.15)
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where the function, Ngj is defined as

NEL = | droPe (r)par), (E.16)

and p.(r) is the nuclear density for a particular species of nucleon. There is also a
contribution from the terms with t; # 1;:

1 .. L .
5 D ({iWafa,pP(r1)pP (r2)(aa(Ti T, +7y7f) + ba(Tr72:) i)

i,i<ef

T:ﬁé’rj
1
= 3 Wabafe, > stﬁ @ (r1)pPe(r1) @i(r1) J'dsfz(P}‘(Tz)pB“(fz)(Pi(Tz)
i
= —Wibafq, (J d*rpPe(r)py(7) J'd31‘pﬁ° (f)pn(r)>
= ~Wabafe, (NDIN). (E.17)
so that the total energy contribution from these terms is
1 a2
Ecairee = 5Wabafa, (N3, = NgY)
1
= SWabafa, (ANg, ), (E.18)

in which the function
ANg, = (N5 =Ny, ™) = | 0P (1) (p, (1) = pal) (E.19)

is defined. The exchange term is also calculated by splitting it into two sums. For
T; = T, the contribution to the exchange energy is

= —(1/2)Wafa, Y ({jlpPe(r1)pP (r2)(aa(t{ Ty + 77 13) + balTi2T22))lit)
ii<eg

— (1/z)waf%ba”d%d%pﬁam)pﬁﬂ(rz)(pp(n,rz)pp(rz,m
+on(T1,12)Pn(12,711))
= (1/2)Wqfo,baM" (E.20)

and for t; # 1;:

= —(1/2)Wqfa, > (ijloPe(r)pPe(r) (aa(ti T, + T3 + ba(T12122)) i)
ij<esf
’ri#’ri

— (1/z)waf%aa”d%]d%pﬁam)pf-“ﬂ(rz)(pp(n,rz)pn(m,m

+pn(r1,12)Pp (12, 71))
= —(1/2)Wfa,acM5" (E.21)
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so that the total energy contribution due to the exchange term of the isospin-
dependent part of the force is

1 1 :
ET,exch = *zwabafocq Mg:) - zwaaafoca Mg:) (E 22)

Derivative term

The energy due to the direct part of this term is

2
Eaar = (k/2) jd%p(mvzp(m Jd3sz(T2)VZP(T2) — (k/2) U d%p(r)vlp(r)] = e,

2
(E.23)
where Ny is
Ng = Jd3rp(r)V2p(r). (E.24)
The exchange term can be written
Ed,exch = (k/2) JJ d>r1d?r2p(r1,72) p(12, 1) Vip(T1) Vip(12). (E.25)

We may define the 6-dimension integral to be M4 in analogy with the other ex-
change integrals.

Spin-orbit term

To evaluate the energy contribution from the spin-orbit term, it is noted that

P=0482=07+¢+21-% (E.26)
so that
?-@:1(?24%@2) (E.27)
5 :
and the act of this operator on a single particle state is
A AL 1/, . 3\ .
L-8li) =3 (Ji(]i+1)—li(li+1)—1> 1) (E.28)
This eigenvalue, w;, is abbreviated for brevity as,
1
Wizz(ji(ji+1)*h(h+1)*3/4)- (E.29)

The spin-orbit energy, then, can be written:

STop(r) .
Eso = cZ(t; 3 wili)

‘i.<€]:

1
= ¢ J dST; a%(:) P (1)
= ¢cN, (E.30)
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where the “weighted density” is defined as

pw(t) =D wigi(r)ei(r). (E.31)
‘i.<€]:
and N,, to be the integral in the above expression. In summary, the complete
expression of the energy due to the monopole and spin-orbit terms may be written
as
1 , 1
Err = ) {SWefaNE, — 3Wefa, My,

E=a,r

1 1 T TT
£ SWebefe, (AN, )2 — SWe, [b:MET + acMT] |
1 1

+ szﬁ — szd +cN,, (E.32)

Higher Multipole terms

The energy due to the dipole or quadrupole interactions may be written

f W A y . oy e
Erara = 250 3 3 (SN0 0(r) Yam(#)) (13 0(r2)Ya m($2)) (15) — [51))
ij<er M=—A
(E.33)
The direct contribution to the HF energy for a spherical nucleus in which each
shell is filled is zero. To show this one notes that the force is separable so that the
sums over i and j can be considered separately. Looking just at the angular part
of the sum over i (which subscript can be dropped without confusion), one has

D (/2 mYamlt1/2)im) = 3 3y (lnud/2mglim)(tmi1/2m{lim)

m m mlm’L msmy

(1/2mg|1/2m) (Lmy|Y apm/lmy)
= ) mul/2meim)P(tmy Y amllmy)

mmpms
2j+1 )
= Z{ﬁ\ﬂ/l —mgim/lmy ) (my| Y amllmy)

mmpms
= 2 %ﬂmﬂYAMlmﬁ
— B sz?YAM(?)
2j+1 5
\/47( A
so for the values of A of interest, i.e. 1 and 2, there is no direct contribution
to the Hartree-Fock energy. The exchange term is just evaluated directly from
expression (E.33).

(E.34)
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E.2.2 Hartree-Fock Potential

To determine the one-body Hartree-Fock potential, the variational principle is
used, as described at the beginning of this Appendix, to minimize the energy. The
contributions from the various terms in the energy are as follows:

Central Term

The variation of the direct part gives us

d 1 1 of ON
— [ =W,f.N 3) = —We—22 Ng.2 4+ Wqfe Ng,—2=  (E.35
St (2ol 2VSepa sty Y
The variation of f,_ is
oo 0 (] ]
Sy (x) Sepg(x) [) ¢
-2
Spa(r)
= — || p¥(r)d3r Jd3 —
U Palr) ] 50;(x)
= [foca]zocajd3rp°‘“]() (1)
Py (x)
— [fo(a]zocajd3rp°‘“ 1 Z(pk X — T)0xp
= —[fa ) 0tap® ! (X) @p () (E.36)
so that the first term in (E.35) is
~Wa(a/2) (faeNpo)* 0% (x) @p(x) (E.37)
giving a contribution to the HF mean-field of
U(x) = Wal(®a/2) (feeNp, ) p% 1 (x). (E.38)

Here U(x) denotes the particular contribution to the HF potential, and the same
function will be used throughout this derivation to denote other contributions. In
the end U(x) will be used to mean the sum of all the contributions together.

The second term in (E.35) is

Wofo, Np, Jd rpBet (1)

= Wafa ,Np.(Ba+1) Jd3rpﬁa (r)%

= Wafa,Np,(Ba +1)pP (x) @} (x) (E.39)

Sy (x)
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which gives a contribution to the Hartree-Fock potential of
U(X) — WafocaNBq (Ba + 1 )pBa (X)

Now is performed the variation of the exchange energy:

5 1
— W fe. Mg,
507 (x) (2 P )

1 5f o 1 Mg
= W, ——Mp, — sWqfa, " =
27 %Sep(x) P2 53 (x)

(E.40)

(E.41)

The first term involves the variation of f,_ as with the direct part, and the contri-

bution to the (local) Hartree-Fock potential can be written down as

1
U(x) = +§Wa(fcxa)2Mfsap“°*1 (x)

Variation of the function Mg, is as follows:

(E.42)

Mg, _ 6 (Z J'J'd3r1d3rz(p{‘(r1)(pj(rz)pﬁ“(ﬁ)pﬁ"(fz)(Pj(ﬁ)(Pi(Tz))

(x)

o %

Sy (x) S

ij<er

6 *
= Y | | EndPr ()P (1)< (12) s (1) i(12)

Sy (x)

ij<er v

rr 6 ik
d’rid*ry @ (1) LL(TZ) ’
J J 6(pb (X)

§pPe(rq)
Sy (x)
5pPe(r)
S (%)

+
™

H

K
A
m
2

d*ryd*r20f (1) @} (12)

H

K
A
m
2

+
™

d*rid’ro0f (1) @5 (r2) pPe(r1)

J 1203 (12) 0P (x) 0 (12) 9 (x) o (12)

d3r1 @; (r1)pPe (r1)pPe (x) @F (1) @7 (x)

MMM M

_|_

ij<er

+ ) JCBH @F (r1)@;(x)pPe (r1) BapP ! (%) @ (%) @5 (11) @i (x)

ij<er

a(1y)pPe (T2)@;(T1) @i(r2)
pPe(r2) @5 (r1) @i (1)

®;j (r1) @i(r2)

297 (%) ©;(12) Bap® ! (%) @b (x) pPe (12) @5 (%) i (12)

(E.43)

By relabelling of indices and coordinates, the first and second terms are seen to

be equal, as are the third and fourth terms. This variation then becomes:

Socts = 2 Y oPx)aulx) | (1o (s

i<er
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+ 2 Y olxpt Ien(dex) | drgy (P e (E44

ij<er
The first term contributes to a nonlocal Hartree-Fock potential:
U, X )p(x') = Wafa, Y pPe(x)@i(x) U d3r<pi‘(r)p'5°(r)<pb(r)] (E.45)
‘i.<€]:
and the other term contributes to the local Hartree—-Fock potential:
U(x) = Wofo, BaGp, (x)pPe T (x) (E.46)

where Gg_(x) is defined as

Gp.(x) = Jd3rp(r,><)p(x,r)pﬁ“(r) (E.47)

Isospin-dependent term

The functional variation of the energy which comes from the direct part of the
isospin-dependent term (E.18) is

6Efrdirect 1 6fo¢ 2
> = =Vb,——— (AN a) —i—Wabaf(xa AN a)
sorl) 2 Pa5gr(x) AN (ANg

= —W,agba [fa, ANg % p* ' (%) @y (%)
+ Wabafa, (AN )[Bap® (%) (pp(x) — pn(X)) @b(X)
+ P (o (%) — @p (%) ] (E.48)

0(ANg, )
Sy (x)

The first term contributes the following to the Hartree-Fock potential:
U(x) = ~Wabg [, ANg,I* p% 1 (x) (E.49)

From the variation of AN, there is a contribution which applies equally to the
proton and neutron Hartree-Fock potential:

U(x) = Wabafe, (ANg,)BapPe ' (x)5p(x) (E.50)

where 5p(x) = p,(x) — pn(x). There is also a contribution which depends on the
nucleon species. The contribution to the proton potential is

U, (x) = Wobafa, (ANg, )pPe(x) (E.51)
and the contribution to the neutron potential is

un(x) - _Wabafoca(ANBa)pBa(X)- (E52)
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Define a quantity A.Ng,, which equals ANy, for T = p and is —ANg, for T = n,
one can write the contribution in a unified term;

Ue(x) = Wobgfa, (ANp, ) Bap”e(x) (E.53)

The variation of the exchange term is

6ET exch 6fo¢ ( 1 () (T’f))
’ = W,—2 (b M + a M
Sy (x) Sopp(x) \4 Pa Pa
1 smi™ sM
+ —Wbafa, — b + Woaafa, —2o. E.54
4 5L (x) 505 (x) (E.54)

The variation of f,_ proceeds as before, giving rise to a contribution to the local
Hartree—Fock potential of

1 T TT
U(x) = — caWaba fa ) (M7 + M) (E.55)

The varation of the exchange integrals, M ™ and M "0 is rather complicated.

Firstly, let's look at M . It consists of a sum of two terms which differ only by
the isospin index. Let us then consider the case where the index labels proton
states. The result for the neutron states will be identical in form.

MEZ 5 [[aman 22 e 11100 () 1)
6(pik)(x) - s T 5 *( ) (ijp T2)P T1)P T2)Qiep\T1) PieplT2
([ 3. 5. d@jcp(r2) B B
+ E d°r:d TZ(piep(Tl) 57 (x) pPe(r)p “(Tz)(PjEp(ﬁ)(PiEp(Tz)
b

ij<erep® *

ror i i SoPa(r )
+ Z d*ryd’r, Piep (1) @jep (12) W pPe(ry) Pjep (T1) @iep(T2)

ij<erep® *

([ 5. 3. . % B dpPe(r,
+ Z d*r1d r2 @i, (T1) @y (12)p “(ﬁ)ﬁ@j@(ﬁ)@i@(m)

ij<ep€p*” 6(p{; X

- Z Jdsrz(P;‘ep(Tz)pBa(X)pﬁa(fz)@j(x)@bep(rﬁ
j<er€p

w3 | @it (o )P () oney (1 picy )
i<efp€p

+ > Jd3rchl€p( ) @iep(12)BaPP ™ (X) @vep (X) PP (12) @jep (X) @iep (12)
ij<erep

+ ) Jdsﬁ@i‘@(ﬁ)(pE‘Ep(X)pﬁa(ﬁ)Bapﬁ“'(X)@bao(x)@jao(ﬁ)@iEp(X)-
Y<er€p

(E.56)
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Here, the first two terms are equal (with suitable relabelling of indices), as are the
third and fourth terms. The expression simplifies to:

Mg _ ; b b
s = 2 X {[@roi 0P o1} 08 (gicy

i<er€p

+ 2 ) ”d3w]ep )pB“(r)cpiEp(r)}BapB“‘(X)cpjep(x)@b(x)

ij<er€p

Note that in the second term, the index b includes both proton and neutron states.
The first term gives rise to a non-local potential which acts on protons only:

1 ! !
— zwabafoca Pp (X »X)pﬁa(x )pﬁa(x) (E57)

and the second term gives a contribution to the local Hartree-Fock potential, of
both protons and neutrons, of

u‘p (x) X,)

U(x) = Wq (ba) fa,pPe T (x)GE (x), (E.58)
where
Gp (x) = Z (J d3f<p}‘ep(r)pﬁ°(f)<pi@(f)> Piep (X) @jep(x). (E.59)
ij<er€p

Replacing the proton label everywhere by a neutron label gives a non-local neutron
potential

U [x,X') = SWoabafe, 0n(x', X)0P (x' )P (x) (E.60)
and a contribution to the one-body potential which applies to both nucleon species

of
U(x) = We (ba) fa,pPe ' (x) G (x) (E.61)

This leaves just the exchange terms where the isospins of states i and j differ:
sM™
Sy (x)

= Z Z PdST] d3T26(p%k(r1)(p;{(Tz)pBa(Tz)pBa(T])(Pj(T])(Pi(Tz)

iep<er jen<er * 6(9:&‘;(7()
[ * 6@?4(1‘2)
+ Z Z d3T] d3T2(pi (T])_6 ]* pﬁa(rl)pﬁa(r])(pj(r])(pi(TZ)
J (Pb(x)
[ SpPa(r

+ Z Z d’ry d3T2(Pf(T1)(P}k(T2)

iep<er jen<er "

iep<er jen<er "

1)pﬁa
Sy (x)

- Ba
+ Z Z d3r, d3r2(p;‘(r1)(p;‘(Tz)pB°(T1)6p (rZ)(pj(Tl)(Pi(Tz)

%
i€p<er jén<er 6(pb (X)

= T [@reimete o x) o ()

jEn<er

(11 )(Pj (T1) @i(r2)
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+ Z d*r1@f (r1)pPe (1) pPe (12) @ (T1) @1 (%)

Y Y [ rele] () Bupt ! (Xen(xIo (ralesxlgilra)

iep<er jeEn<er

b Y [ Enelr)e; e mBat ! (xIeu(x) ()01 (8.62)

iep<er jen<er

The first term gives rise to a nonlocal potential, acting only on proton states:

Uy (3, X') = 3 Wetafa, o6, X )0P* ()P (x') s () (E.63)

The next term produces a nonlocal neutron potential:

1 / / !
= 5 Waaafa, pp (%, x')pP (x)pP (x") @y (x') (E.64)

Un(x,%) = 3

The terms arising from the variation of the density apply both to neutron and
proton states. The third term gives a local HF potential of

U = TWettafe, Bap® ! ()G 1 (E.65)
where Gg;)(x) is defined as
G (x) = jd%pp (%) o x, T) P2 (1) (E.66)

The fourth term differs from the third only by the exchanging of labels p « n.

Derivative Term

The variation of the direct energy of the derivative term gives

) ON4 )
Egair = kN = kNp d3rp(r)V2p ().
oo Fortay = WNogoer | drolr) vl
)
= c13 { } 1) + kNg Jd3 V2p(r{E.67
Tp(r) 5ot () p(r{E.67)
The first terms is simply evaluated as

=KkNgV?p(r) - @p(x) (E.68)

so that it gives a contribution to the HF potential of

U(x) = kN4V?p(x) (E.69)
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Since the density depends only on the radial coordinate, the operation of the lapla-
cian on the density is

Vp(r) = 1 (aar 2;) p(r). (E.70)

Then the variation of the second term, with partial derivatives with respect to the
coordinate r, is best carried out by explicitly varying just the radial function. The
variation of this term is

47tkNderp(r) 673{;()()5 (T 3 (]\%T). yp R; (T)'Ri(T)) . (E.71)

Integrating once by parts gives

dp(r) & 0O )
—kN 2 — 2+ DR: (1), E.72
dJ'dT‘I‘ or SR or (1\%}-( it + DRI () Ri(7) ( )
and once more — - 5
Ny D (5220 2 ), (E.73)
xZ 0x 0x

so this also gives a contribution to the HF potential of
U(x) = kN4V?p(x). (E.74)

The exchange potential in this case is rather complicated and consists of calculating
the action of the Laplacian on the density matrices. A simple approximation which
can be made is to replace the density matrices with the local one-body density:

” BridPrap(r, T2)p(ra, 1) (11, 12) — ” PridPrap(r)83(m — m)f(r, ). (E.75)

In the case that f(r;, ;) = 1 the replacement is an identity. For simplicity consider
that the densities are of a single nucleon species, g

JJ d*ridPropq (11, 12)pg(12,11) = JJ d3r1d31"ZZZ(p1 T2) @5 (1) @i(11) @;(12)

i=1 j=1

= ZZ (J d3T1(P] T (Pl(T1)> (J'd31”2(pf(1”2)(pi(r2)>

1—1)1

Ng

— ZZ 5y;04 = Z1 — (E.76)

i=1 j=1

and
”' d3r d3rzpq(r1 )83 (1) — 1) = J'd3rpq(r) = Ny. (E.77)
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For other values of f(r;, ;) the replacement is an approximation. However, in
cases where the exchange terms are directly calculable it is shown to be a good one
and its use here should be considered better than ignoring the term completely.
The exchange energy, then, is

1 1 2
Edexch = —skMg4 = ——kJ d3rp(r) (Vzp(r)) . (E.78)
2 2
The variation of the first p gives simply a direct contribution to the HF potential:
1
U = —5k V2o(x)]". (E.79)

The variation of the potential (the rearrangement term) proceeds:

%kj d3rp(r) [vlp(r)]z = kJ dPro(r)V2p(r) —>—V2p(r). (E.80)

Sy (x) Sy (x)

In calculating the direct term it was shown that the action of the variational op-
erator on a Laplacian was to move the Laplacian to act on the parts of the integral
not subject to the variation. This would lead to a term of the form

~ V2 (p(r)V?p(1)) (E.81)

which includes calculating fourth derivatives of the density, which is too cumber-
some to be considered an worthwhile approximation. If one returns to the full
expression for the exchange energy and varies the potential in the matrix element
to look at the rearrangement term, one has

—k JJ d>r1drap(r2,T1)p (71, 12)

%pr(ﬁ)] Vip(r2). (E.82)
Here the factor of 1/2 has been dropped since there is also an identical term with
the variational operator acting on the term of the potential in r,. Since the Lapla-
cian being varied only operates on r;, when it is taken to act on all the terms not
being varied, it does not then act on V5p(r,), but only on those parts dependent
on r; — the density matrixes. At this stage the approximation may be applied to
give

k” A3, P V2p(12) V2o (11, 12)p(12, T1)1 @ (11)8 (11 — X)
~ —k” B ryd,V20(1) VE(p(1)5 (11 — 12)) o (x)5(r1 — x)

= —k[VZp(x)]*@p(x) (E.83)

where the approximation is taken with some caution since the functon f(r,1;)
contains derivative operators and delta functions. In any case the result here is
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the same magnitude as with the safer invocation of the approximation above. It’s
numerical value in actual calculations, like the exchange terms elsewhere, is rather
smaller than the direct term. This being so, the term may be neglected. If it is
not, the entire contribution from the exchange part of the derivative term to the
HF potential is approximated as

U =~ (v2p(x))? (E.84)
Spin-Orbit Term
The spin-orbit energy is
Eso - CNW - CJd3rl ap(r) pw(r)
T T

> Zjil: 1Wj7€§‘(r)R]-(r) (E.85)

(Nlj);

Using the variational principle for the radial wavefunctions (E.2), the second term
is just

or 47t

NYT);

= chdr47r— L Z Ri(r)Ri(r)

which may be varied with respect to the radial wavefunction as

0Eso 5 0 y .
SR (X) = CJTdpr(T)W{ar (]\%)i(231+1)7€i(r)7€l(r)

00(r) R
d (255 + 1 J
o]y 2 B Ry

R]’ (T)

10p(x
— %E( )WbRb(X) (E86)
which gives rise to a state-dependent potential
10p(x
U(x)@p(x) =c— bl )Wb(Pb(X)- (E.87)
x 0Xx

The first term requires an integration by parts:

5Ri(7)
SRy (%)

— | o) Y @ g R

or (NG

1 ( dpw(x)
= —c— |x

x2 0x

+ pw(x)> Ry (x) (E.88)

so that the total HF potential arising from the spin-orbit force is

1 0p(x) 10pw(x) 1

Uso (x)@p(x) =c (;Wb ox  x ox ;Pw(@) Pp(x). (E.89)
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The potential is finite at the origin since p,,(x) disappears at x = 0 due to the fact
that the weight w is zero for s-states, and the derivatives of the densities disappear
also at x = 0 since the densities must be flat at the origin to ensure that it varies
smoothly.

Collected Terms

Bringing all the terms together, the Local Hartree-Fock Potential due to the
monopole interaction is

W) = Y { Wi, [Npo(Be + 1)+ beANg, | 0P (x)

E=a,r
— Welae/2) [fa] [N3, +belANg, )Y 0% (x)
— Wifa, Be [Gpe (x) + b: GE? (x) + be GRT(x)] o (x)
+ Weloe/2)[fo Mg, p™ ' (x)
— WebeBefa, [ANg, | 0P (x)5p(x)
+ Weloe/2) [foe]” (e [MBP +MEY] + ae [MB™ + M3?]) 0% (x)
- Waagfo Be (GR(X) + G () pP 1)}

+ 2kN4V?p(x) — k%(vzp(x))z (E.90)

and the nonlocal Hartree-Fock potential is

Un(x,x') = = 3 {Wekaplx,x)pP (x)pPe (x')

E=a,r

+ Wiebefa, po(x, x")pPe(x)pPt (x")

+ Waasfa,pelx,x)oP (x)pP () }. (E.91)

°

In addition there is a contribution to the local HF potential which depends upon
the state on which it is acting:

Uslonlx) ¢ (w25 - LB o ) . (E92



Appendix F

Perturbation Terms for Separable Force

F.1 Second Order Energy Correction

As shown in Appendix B the second order correction to the total energy is obtained
by evaluating the following sum:

b 2
Z Z Cl ‘\)‘TS ‘ (F]_)
€a —I' €p — €r — €

a;éb<ep T#S>EF

where the labels a, b, ¢ and d denote all the quantum numbers labelling each
state, viz. N, 1, j, m and T, and V is the two-body interaction.

Since the single-particle energies e are independent of the m quantum num-
bers, it is possible to sum the squared matrix elements over m to give a closed-
form expression. To do this, the matrix element is expanded as a sum of contri-
butions from each of the terms in the potential, then each of the resulting terms
may have its m numbers summed over. Defining the greek letters «, 3, p and o to
be the subset of quantum numbers & = {N, 1,j, T},, the sum (F.1) may be written

SEPEPY ﬁeﬁ_ep_eg >

«,p<er P,O>€F Mgq--Ms

(1 — 80pOmamy) (1 — 85p8m.m, ) |(abllrs)* (F.2)

where the Kronecker delta symbols serve to restrict m, # m,; when all the other
quantum numbers of particle a are the same as those of particle b and likewise
for particles r and s. In this way the summation over the quantum numbers may
is unrestricted. Looking at the terms which do include these delta symbols, it is
easy to show that they disappear. For instance, the term with §,36,,m, may be
simple summed over b = 3, m;, to give

4L L oo L (e

— €
a<er P,0>€F O mamyms

127
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which is zero since the antisymmetrized matrix element vanished when the two
states in the bra (or the ket) are the same.

For the present purposes the potential (3.1, 3.4, 3.5) may be expressed in a
way which hides all the dependence on the quantum numbers N, 1, j and T and
puts them in functions Fy, Fp and Fq for the monopole, dipole and quadrupole
interactions respectively:

V(r,12) = Vmlri,12) + Vp(ry,12) + Volr1,72)
1
= Fulr,m) +Folr,m2) Y (=DMYim(f1)Ye m(f2)
M=-1
2

+ Folr,m2) D (DMYau(#1)Yam(f2). (F.3)
M=-2

Non-antisymmetrized matrix elements of each of these terms are then

(ablVamlrs) = FREPI811,85ui, Smam, Oyl 8o Smpms (F.4)
1
(ab|VDh*s> - Fgﬁpc Z (*1)M<jama|Y1M|jrmr><jbmb|Y14\/l|jsms> (FS)
M=—1
2

(ablVqlrs) = F&*’ Z (=DM GamalYamlirme) Gomp| Yo mljsms) (F.6)

M=-2

The matrix element of a spherical harmonic between spinor spherical harmonic
states, in the case of the coupling order | + 1/2 = j which is used throught this
work, is [24]

GmiYomli ') = ('m LMjm) (1 )L@@%Lon'%g (14 (1)) (F.7)

where the shorthand notation £ = 2L + 1 has been used. Here, the parts indepen-
dent of m (the reduced matrix elements) may be subsumed into functions I'y so
that

1
(ablVplrs) = FEPPTEPee y (—)MGim IMljama)(JsmeT —Mljpms)
M=—1
2

(ablVglrs) = F&PPTEP 3 (- HMGm2Mljama) (jsms2 -~ Mlipms).
M=-2

Note also that the monopole force may be expressed in this form, too:

0
(ablVilrs) = FabPTef " > (—1)MGrmOMliama) (jsms0 —Mlipmsy) (F.8)

M=0
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since the sum is just 8,1, m,8m.m,- This means the monopole I' is defined as F,(’jfp" =
01,1, 05.5.01,1.05,5.- This being so, it is convenient to consider only a generalized
multipole form which corresponds to the monopole, dipole and quadrupole terms
upon suitable substitution for a parameter A (0,1 or 2 respectively):

A
VAlr,ma) =Falr,ma) ) (DMYam(A)Ya m(f). (F.9)

M=—A

Furthermore since the F and I' numbers always appear together with the same
super- and subscripts they may, to reduce notational clutter, be redefined as one
number:

Fobyd — pabropabys (F.10)

The multipole operators are constructed so as to be scalar. To take advantage
of this, and also to verify it, the matrix elements may be evaluated by coupling
the two body states to good total angular momentum. An antisymmetrized matrix
element of given mutipole may be written

(ablialrs) = > (aMajomolIM)Grmpiemali' ™M)
IMJ’M!
[((«B)TMIVAl(pa) M) — (1) 75T ((aB)TMIVAl (0p) 'M)] .

(F.11)

This coupling was done to make the dependence of the matrix element on the
quantum numbers m, --- mg as simple as possible so that they may be summed
out later in the expression for the energy correction. It is possible at this stage to
greatly simplify the angular dependence still in the coupled matrix elements. To
begin, they are uncoupled again:

(aB)IMIVAl(po) M) = FRPP7Y " % (IMfjamjpm’)(jrmjom”[J'M’)

I*L mmlmllmlll
<J amjbml| (*1 )HYAuYAﬂ1|jrm”jsmm>
= BN (=% Y (Mlamjem)
I*L mmlmllmlll

Grm"jom"['M") Gym" Apljom) Gsm” Apljpm').

This sum of four Clebsch-Gordan coefficients over four magnetic quantum numbers
can be reduced to a 9-j symbol and two Clebsch-Gordan coefficients summed over
one angular momentum and its projection. This gives for the matrix element

(aB)IMIVAl(po) M) = FRP7Y (—1)" Y (ApA —plke)(J'M'kk[TM)
28 kk
—~ I ja jb
/]\a/\bllE I, jr js
k A A
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From the first Clebsch-Gordan coefficient one immediately has the condition k =
0 so that k may be summed out. Then this Clebsch-Gordan coefficient may be
summed over p:

NN HARA k) = (- 1/A50V/A. (F.12)

Inserting this in the above expression and summing over k the matrix element
becomes

(aB)IMIVAl(po) M) = FP7 (1) /3 fIA

] ]a Jv
(UMooTM) € T G s - (F.13)
0 A A

The remaining Clebsch-Gordan coefficient is 8;y8mam:. This shows that the mul-
tipole operators are indeed scalars. The 9-j symbol with a zero reduces to a 6-j

symbol:
} j.(l j-b (71 )jr+jb+/\+] { jS jT I } (F 14)
v )s = N : : : ’
0 A A A /I/\ Ja Jv A

thus the matrix element reduces to

(aB)IMIVAl(p0) M) = FREP7 (1) 305, S xrb{ o i} (F.15)

The full antisymmetrized matrix element which appears in the sum for the energy
correction is thus

(ab|\7,\h*s> - Z<jamajbmb|IM><jrmrjsms|IM>\//]\a/]\b

M

]“fochO' 1 J+ir+iv ?.s ?.r I }+I~:oc[30'p -1 jb-)-js{ ?1‘ ?.s I }
[A =1 {Jan/\ A ja b A
(F.16)

In the expression (F.1) the sum over m, - m of the square of these matrix
elements needs to be evaluated. All possible terms appearing here can be consid-
ered by looking at two terms; (ab|Va|rs)(ab|Va/lrs) and (ab|Valrs)(ab|Vasr). The
first case is

> (ab|Valrs)(ab|Valrs) = Z D ) Gamajome TM) (rmyjsmg|TM)

Mq- Mg ~ms JM J'M/

<Jama3bmb‘] M ><]rmr]sms‘] M >]a]b

]N:ocﬁpof:oc[spo{ ?s ?r ] }{ ?.s ?.r ]I }
A ja Jo A ja Jo A
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The quantum numbers m, and my may be summed over the two Clebsch-Gordan
coefficients in which they appear to give 8;dmm:. Likewise m, and m;. Summing
over both M and M’ then gives a factor of (2] + 1). J' may be trivially summed
over thanks to the Kronecker delta. This leaves one sum:

A A TxpBporappo S 1‘ .S .T I
Z <ab‘VA‘TS><ab|V/\|TS> _]a]bF P F/\[5p ZI{ }{ ]?a ] N }

Mg e Ja ]b )b

Providing the triplets (j,jr, /A) and (jy, js, A’) satisfy the triangle relation, the sum
over J reduces to S,. A" [104]. The condition of satisfying the triangle relations
is seen to already be true due to the I' functions. The final answer for this term is
then

> (ab|Valrs){ab|Valrs) = ’(}’\b FoPeopaBeos o (F.17)

The Kronecker delta in A and A’ shows that there are no cross terms between
multipoles.
The other possible term is

> (ab[Valrs)(ab[Valst) = Z > ) (I famajrme TM) (Grmajeme TM)

Mg Mg My M J'M!

(JamanmbU M) Grmujsms "M )70

- !
A S A
A A{Jan/\ ja Jo A

Again the four Clebsch-Gordan coefficients sum out and M, M’ and J' may be
summed over:

Z (ab|VAlrs)(abl|ValsT) = (i])]"r"'js/]\a/]\b?f{ﬁpo'?j{?o'p

ek p I T
;I( ){Jan/\ ja Jb A
This sum over two 6-j symbols can be reduced to a single 6-j symbol[104]:

ZI { oo /I\}{; y /{,}z(mM{;s X /\} (F.18)

so that the summed matrix elements are

.. ,
Z (ablVAlrs)(ab|Vlst) = (—1)irtistATA FaBpogapops o { ;: ;1; //\\} (F.19)

Now there is no Kronecker delta in A and A’ so that there may appear cross terms
of this form between multipoles.
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When expanding the squared matrix element in (F.1) over the six terms of V
(one direct and one exchange matrix element from each of the three multipoles)
there are 7!/5!2! = 21 terms. Many of these can be combined since the sum over r
runs over exactly the same states as s so, for example, the summed direct x direct
term for a given multipole is the same as the summed exchange x exchange. Fur-
thermore it has been show that some terms are zero. In fact, of the 21 terms, just
9 remain. The final expression for the second order energy correction is obtained
by inserting the appropriate combinations of A and A’ in the above expression.
After simplifying the cases in which one or more of A, A’ and A" equals zero, the
result is:

~ 2 ~ ~
D D M s [ RS s
€x p o

oc[3<eFPO'>€F
o 1/~ 2
_ ZF“MBPG(—U“’ ja /] % (Focﬁcp+FocBUp) + (F%ﬁpa) 25

3
1
—1 jr— ]sF“BpGF“BGP/\/\ { ]a ?1‘ }

i 1
_ 1 Jr+]sF“BPGF“BGP/\/\ { ja ?r }
( ) JaJo Jb )s 2

1 /e 2 L
o xBpo\ A A jr—ijs TXBPOFXBOPA Ja I
+ 5 (F7) 3ado + (1) RGP TR P, {jb I H (F.20)

F.2 Third Order Energy Correction

F.2.1 Hole-Hole Scattering term

The energy correction due to the hole-hole-scattering diagram is

](1}1 Z Z Z — (abPlrs)(cd[Vlab)(rs[¥lcd) (F.21)

a;éb<ep c#d<ef r#s>er T€ & & )((—ZC Tea— & eS)

Again, since the single particle energies are independent of m, the m quantum
numbers may be summed out of product of matrix elements. As in the second
order term, one must be careful to exclude terms in which b = aorc = d. Itis
seen, however, that these terms vanish so may be included in the sum without
danger.

The product of three antisymmetrized matrix elements expands to a sum of
8 terms of products of three non-antisymmetrized matrix elements. Using the
following facts,

(ablVIrs) = (ba|Visr)
(ablVlrs) = (rs|V]ab),
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one can show that these eight terms pair up into four terms. Furthermore, since
these terms are summed over labels which run over the same states as other labels
summed over, one may swap pairs of these labels without affecting the result. This
operation enables one to identify the four terms as really being two independent
terms. Going through this process, then, one can show that the above sum (F.21)
can be written

1 1
-3 Y Yo

ey T e +ep— €, €5)(€y+ €5 — € — €g)

Y (ablVirs){cd[Vlab) ((rs|Vicd) — (rs|V|dc)). (F.22)

Mq-Ms

This involves two different terms, each of which needs to be evaluated. Looking
at the first, with the possibility of a different multipolarity for each;

Z (ab|Vlrs){(cd|Valab) (rs|Varlcd) = Z Fobpofylabfroyd

Mq-Ms Mq-Ms

3 Y D GamadomplIM) Grmusme TM) (jemejamall’ M)

]M II MI ]// M//
GaMajomplI' M) GimjsmglJ"M") Gemejamal]"M”)

\/ /]\a/]\b/]\c/]\d/]\r/]\s

(1)]+I’+I”+jq+jb+jc+jd+jr+js{ js Jr ] }{ jo Ja T }{ ja Je T }
ja jo A S Lde da A jrods A

As in the case of the second order correction, the numbers m,---m, may be
summed over giving delta functions in the J and M numbers, all of which but
one ] may be trivially summed, to give:

PR e,
FAPPOERPEAT fduicdadds ) T(—1)3 Hetivtietiatirt
J

{Js Jr]}{)b]a]}{)d)c ]}

ja jb A jc jd N jr js A" .

This sum of three 6-j symbols is known[104] and gives for the sum of three matrix
elements;

Z (ab|Valrs)(cd[Varlab)(rs|Vanled) = FEPPopdabEroye

TIDTD: (1)/\+/\’+/\”{ A NN }{ A A A
¢ ¢ e ja jc jr jb jd js

} . (F.23)
The other term, after summing out the Clebsch-Gordan Coefficients, is

— ) (abVirs)(cd|V]ab)(rs|V|dc) = FRP*PFI0*PFA)951 /33

Mg Ms
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'ZT(nzIHjSHjade{ jo Ja ] }{ o Ja ] }{ je Ja ) }
i jf jS A jC jd N jr js A

o e o A
= 7}:/0\0“[3]:}//\,06[3}:/0\(,7, Y/]\r/]\s ]c/]\d ja /\I jc (F24)
A jb js

Now all that remains is to evaluate these contributions for the possible values of
A, A" and A” which arise. Since each of these numbers can take on three different
values there are 3° = 27 different terms to evaluate. By observing that the labels
a and b run over the same states and always appear together in the energy de-
nominator, they may be interchanged without effect, likewise ¢ and d, and r and
s. Then, 9 of the 27 terms may be identified with another 9 to give 18 independent
terms. Of these, 7 vanish for the 'direct’ term (F.23), but all are finite in the ex-
change term (F.24). For those terms in which at least one of A, A’ and A” is zero,
the 6- and 9-j symbols simplify. The full expression for the third order energy
correction due the the h-h diagram is then

3) _ L
Ehh - Z Z Z eo(—|-eﬁ—epfeo-)(ey‘Feé*ep*eG)

«,B<er v,0<ef P,O>€EF

[Focﬁ pGFvéfxﬁ? (chwf»]\ Fpﬁéy)

. Zfzocﬁpaﬁvéocﬁ (ﬁpaév+?paév)\/j\7]\s
_ FaBpo (vaﬁ _|_sz>cxr5) prfbv \/ﬁ

~ ~ 1 T
b BR3P - R g { e )
S
jativ T T T IN AN AN A 1
+ 2(1)"‘*“’Fi‘prFYDMBFme\/JrJSJCJd{ ;: JJ“ 2}
S
jativ T T T IN AN AN A j j 2
+ 2(1)"‘*“’Fi‘prFBMF%‘m\/JrJSJCJd{ ;: JJ.“ 1 }
S

TxBporyda 1 ja+ib PO N .az
+ 2RPRY 6<5FPW6]a] — (1R 5y\/JszJch{ 23 })
)
)

1 r.a1}
s)b‘I

3P
) 1~ . o . . 2
. 5 a od ) Ja
+ T sF e F‘Y (5 po—y 6]a]r6]bjs o (71 )] +]bF% ! { jS jb 2 }>

Fpoyd
F 6]a]r6]bjs

+ /]\rjxs]é%ﬁpaﬁ?\/jom( (— ‘I)]a-HbFPO"SY{

+ 2( ])]a+]bF‘XBPUFY‘S“BFPG&Y]r]S{ !r J.a ;}
)s Jb

N ] (F.25)
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A A" factor
1

I R
NP, NN P =
DN =N =
_—— N =N

Table F.1: Terms missing from expression (F.25) for the third order hole-hole
energy correction

Here the ellipsis represents the terms which cannot be reduced, i.e. those for
which none of A, A’ or A” are zero. These terms are shown in table F.1 and are
just the expressions (F.23) and (F.24) with the appropriate values of A, A’ and A”
and the factor as indicated in the table.

F.2.2 Particle-Particle Scattering term

The energy correction due to the particle-particle scattering diagram is

Z Z Z (abPrs)(rs|vltu) (tu/v|ab) (F.26)

a;éb<eF T#S>€F tFUSEF €a T€ €& & )((—Za T € € Gu)

If one relabels this usinga — v, b - s, r —a,s - b, t = ¢, u— d, then the
matrix elements are exactly of the same form as the hole-hole expression, and the
labels pair up with others running over the same states in the same way as in the
hole-hole expression. The summation of the magnetic quantum numbers in the
matrix elements may be carried out in exactly the same way. The expression for
the energy correction is then

1
Z Z Z eo‘—l_eB_ep_eﬁ)(€“+€B—eT—ev)[.-.‘| (F27)

o9 B<€F P,0>€F TUV>EF

where the expression elided in the square brackets is just that for the hole-hole
case with the transformation of labels as above.

F.2.3 Particle-Hole Scattering term

In the previous terms the fact that each single particle state occurred always with
the same partner in the two-particle state vector greatly simplified things. Specif-
ically it enabled one to couple the two-body states to good J and then sum out
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the Clebsch-Gordan coefficients which resulted in a trivial way. For the p-h term
the situation is somewhat different. The energy correction is

Egﬂ _ Z Z (abPlrs)(cr¥|at)(st/V|cb) . (F.28)

a#b#cgeF r#£s#At>er (ea + eb o €1‘ 7 es)(eb + eC - €S - €t)

Fortunately, the need to worry about the restriction on the sum is again obviated
by the fact that the matrix elements are antisymmetric and that for each restriction
both labels involved appear somewhere together in a bra or a ket and also together
in the energy denominator. Itis not until one attempts to calculate selected fourth
order diagrams that this becomes a difficult issue.

Fewer reductions can be made in the expansion of the product of three anti-
symmetric matrix elements than in the previous cases. Only two pairs of the 8
may be identified to give for the energy correction:

1 1
g3 _ 1
ph 2 Z Z (€t €p—€p— €5)(€p + €y — €5 — €x)

o, y<ep POT>€F

Z [2<ab\V\rs>(st\Vch)(cr\V\at> — 2(ab|V[rs)(st|VIcb){cr|V|ta)

—(ablV]rs)(st|V|bc)(cr|V]at) + (ab[V|rs){st|V|bc){cr/V|ta)
—(ab|V]st)(st|V]cb)(cr|V]at) + <ab\V\sr>(st\V\cb)(cr\V\ta>] (F.29)

To evaluate the sum over the 6 m quantum numbers it is still easier to couple
the bras and kets to good ] rather than to attempt to sum 6 dependent Clebsch-
Gordan symbols. For the first two terms of (F.29), the coupling of the matrix
elements gives:

Z (ab|VAlrs)(st|Vaslcb) (cT[ian]at) =
(ab(JM)|Valrs(TM)) (st(J'M")[Varleb (J'M)) (e (J"M") DA [at (J"M"))
DD Y DY GamafomsIM) Grmusmy TM) (emgiemy| M)
Ma=Mme JM J'M/ /M

<jcmcjbmbUIMl> <jcmcjrmr|1” M”> <J amajtth” M”> (F 30)

To perform this sum, one takes the first four Clebsch-Gordan coefficients and sums
them over the magnetic numbers which appear twice:

= (_1)]+ja+js+j+r+jC7], Z <jbmbjama|]M> <]sms]rm|]M>
MM/ mpmsg

(JsmsiemeI'M') Gompjeme|]' M)
o , I jb ja
= (=D TTN Gemejemy ke Gomdamalke) < G T e
kK jr jc k
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This result is then combined with the remaining two Clebsch-Gordan coefficients
and sums over magnetic numbers

o , ] jb ja
= (D)WY L5 T

e de Kk
DY Y ) Gemdemulkk) Gemiamalki) GemejrmalJ" M) (JamajemylJ"M”).

K M/ MagMme MMy

Now the sums over the remaining m states are carried out to give for the sum
(F.30)

Y {ablValrs)(stValeb)(crlarlat) =

Mgt

(ab(JM)[Valrs(TM)) (st(J'M)[Varleb(J'M')) (cr(J"M") oar at(J"M"))

] jb ja
Z(_‘I)]+ja+jt+jc*].b*],*]”/lvl\//]\” ie T g . (F.31)
B jr e J”

Now the representation of the reduced matrix elements in terms of the 6-j symbols
(F.15) may be substituted. Looking first at the direct part of the one antisymmetric
matrix element, one has:

Z (ab|Vlrs) (st|Varleb)(cr|Varlat) =

. . . . ’
_Fxﬁdef\TyBFq//\pocTZIf,}’},(_ﬂl—i-]{ )Js Ir /I\ }{ Jb Jc /I\/ }

o7 Ja Jb Js It
. . ] jb ja
"
{5 { i T (F.32)
< jrode J"
The sum of three 6-j symbols and one 9-j symbol in this case may be obtained in

steps. The sum over J” of a factor, and one 6-j and one 9-j may be performed to
give two 6-j symbols. This leaves a sum over two indices of four 6-j symbols:

. 1\ js ]r] jbjc ]I}{jrjt/\”}{y]/\”}
;( ”ﬁ{ia I A}{js N TUT T e [ Ude e ge g B33

Now J', appearing in three of the 6-j symbols may be summed over to give a 9-j

symbol, leaving

N j j I jb I ja

DI E U RS (F.34)
j ¢« AN s e
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Finally the last sum, over ] may be performed. The result is two 6-j symbols so
that the sum over m, - - - m; of the non-antisymmetrized matrix elements is

Z (ab|Valrs)(st|V|cb) (er[Varlat) = \/Iduiddsi Far o F Y PPt

Vet et He A A7 ) Je Je A je de A
(=] {jb oA }{ v o Ar g (F39)

The other 5 terms in (F.29) can be reduced in a similar manner. The results are:

Z (abl\/,\lrs> <St|V/\'|Cb> <CT‘V/\”‘ta> = Aa/\b/]\c/]\r/]\s/]\t?xﬁpG?E\WB]N:XpT“

s s OAN is b /\”}
. _] ]C+]b+]T+JST .S g F.36
1) [ b X (F.36)

Z (ab|Valrs)(st|Valbe) (crVarlat) = v/FFuidids e FarPoFyP e

C e e s s s At A OAN ia I !
(=1)jatTeHeHrHsH A A %{ ]J(: ;Z //t,, } (F.37)
Z (ab|Valst) (st|Valbe) (et Varlta) = —/idei i T Far o R Py Y™
_(_1)ia+jb+ic+ir+is+it5Mf7/AiM” (F.38)

S (@blValrs) (stValeb)(etVarlat) = \duid i e e

-{A44}{A44} (F.39)

jt )r )b jc Ja )s

Z (ab|ValsT) (st|Valeb) (er[Varlta) = /iduidd i FaP P FY PR ™

1V HetirHis+A+A ja jr N js jb A"

- {jb i A}{jt i A'}' (F.40)
Now the expression (F.29) can be evaluated using the reduced sums over the m
quantum numbers. For each of the six terms in (F.29) there are 27 ways of labelling
A, A" and A”. This being the case, that there are 27 x 6 = 162 terms, they are not
explicitely listed here. It is noted, however, that for any term in which at least one
of A, A" and A" is zero, the 6-j symbols will simplify, and the terms, although more
numberous for the particle-hole correction, are individually no more complicated
than for the particle-particle or hole-hole terms.



Appendix G

Neutron Star Equation of State

To obtain the equation of state for the nuclear matter region of a neutron star,
the energy density of the neutron, proton, electron and muon (npew) matter is
written as a sum of nucleon and lepton contributions[22]:

e(Mp, My e, M) = en(Myp, M) + umne? +npmye? + ee(ne)
+ eu(ny) +nemec? +nymyuc? + ey (G.1)

The matter is considered to be in equilibrium with respect to weak interactions:
n&epte Gp+u
which implies the conditions on the chemical potentials:
Hn = Hp + Hey  Hy = He (G.2)
where the chemical potential is defined as

_%e

= (G.3)

1

A second condition arises from the fact that the matter must be electrically neutral,
which implies

N, =MNe+Ny. (G.4)
For each baryon number density fractions are defined as
n
Ypp=—2 G.5
= (G-5)

where n, = n,, +n, is the number of baryons. Lepton fractions are constrained by
the above conditions. Given these definitions and conditions, the EOS is given by
two expressions: The mass density

p(ny) = 3 (G.6)
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and the pressure ;
e/n
P(ny) = nﬁi(dﬁbb).
By eliminating n,, from these equations the EOS results giving pressure as a func-
tion of mass density of the matter.
From 6.30, the energy density of asymmetric matter can be rendered in the
notation of neutron star theory as

(G.7)

en(Mp, Mp, M) = cpn/? + e + %Wanf,ﬁa““z + %Wmffr“*“
b Wb, —ny)? 4 S Wb () (G.8)
or, as a function of ny, and the baryon fractions as
en(My, Yp, Yn) = cpniBYg/3 + chLiBYTSL/3 + %Wanff““”z + %Wrnfff“”’z
+ %Wabaniﬁ““““(Yn — Y, + %Wrbrniﬁ*“*’Lz(Yn —~Y,)? (G.9)

To simplify the calculation, the numbers ¢, and ¢, (which are defined in Chapter 6)
are taken to be the same value, 3, using an average nucleon mass m,, = (1/2)(m,+
my). The first two terms thus become pn)/?(Y3/3 + Y3/3).

This expression is then used to work out the chemical potentials:

_ 0e  0(e/ny) 0OF

— = = G.10
am a(nl/nb) aY1 ( )
where £ =&y + E. + -+ - = e/ny is the energy density per particle. £y is thus
1 1
Enne, Yo, Ya) = By (V52 4 V2%) - sWangPe e 4 swmgfr et
1 1
+ zwabanﬁﬁf“a“ (Yn—Yp)*+ zwrbmzbﬁr*“r“ (Yn— Y,)0G.11)
so the chemical potentials are
e _ = = Y
b = 5y, T3P Y
— WebangPe et (Y, 4 V) Peda (Y, Yy)
— Wb Y, 4 Y )2 (Y, - Y
(G.12)
and
= -— = — Y
P = 3y, T3P T

+

WobangPe @ty 4y, )2Pama(y, V)
+ Wrbrnlljﬁr*fxr-i-] (Y‘p + Yn)zﬁr*ocr (Yp — Yp)
(G.13)
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and their difference is

D, 2/3(v2/3 w23
Mn — Wp = gﬁnb (Yn 7Y‘p)
+ 2WbnpPerxeatly
+ 2W,bmpfrxrtly (G.14)

From the equilibrium condition (G.2) one has
Hn — Hp — He =0 (G.15)
The electron chemical potential p. can be calculated as [106, 107]
e =he(3m?Yeny)' 3. (G.16)

The electron fraction, Y. must be equal to the proton fraction to ensure charge
neutrality, at least below muon threshold. Furthermore since Y, and Y, are related
by the condition Y, + Y,, = 1, the equation (G.15) can be used to combine (G.14)
and (G.16) to give an expression which can be solved for the equilibrium proton
fraction (and so the equilibrium neutron fraction) given just ny

5
0 — g[snff (1=

p)2/3 . Y§/3)
2W b niPemxatly
2W, b Pty

— he(3m?Y,my)'? (G.17)

_I_
_I_

Above muon threshold, i.e. the difference between neutron and proton chem-
ical potentials exceeds the rest mass of the muon, the following condition also
holds

Hn — Wy = My (G.18)
where p, is [106]

W, = \/(mucl)2 +R*c2(3m2Y,n;,)2/3 (G.19)

and it is known from (G.2) that u, = p.. Now the condition for charge neutrality
gives
Yo=Y+ Y, (G.20)

From (G.16) and (G.19) and the condition p. = p,, the electron fraction and the
muon fraction can be related as

-|3/z

Ye= {<mu°2>2( 1 —|—Yi/3J

[ he 3m2ny, )23 (G.21)
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Now the expressions arising from the conditions
Hn—Hp —He = O
Hn —Hp — My = 0
can be solved to give Y, Y. and Y, as a function of the baryon density n,,.

Going back to (G.1) the energy densities for electrons, muons and neutrinos
still need to be evaluated. They are [107, 105]:

1 4

He
e X e (G.22)
1 2 Vo4 1 4 by +k
eu = W Huk(uu—zmuC)—zmuC ln ﬁ (G23)
| Ty
R 24
¢ 872 (e)? (G.24)

where k = (37?Y,;n,)/*hc and p, =hc(67?Yyny,)'/3. The electron energy is approxi-
mated to be ultrarelativistic. In addition there is a contribution from the Coulomb
interaction. The direct term is zero due to the charge neutrality of the system, but
the exchange term provides a small contribution:

3(3\"?
Cce = _E (E) ez(Yenb)4/3 (G25)

Now that the entire expression for the energy density is known, the pressure
may be evaluated. Since the protons and neutrons interact strongly their partial
pressures cannot be defined. Instead, the nucleon pressure is calculated:

d(en/Myp) 2 0EN
Py = ni =
N o anb o anb

- 2pn (v

1
—I_ z(zﬁa — g —I' 1)Wan%)6a7“a+2

1
+ 2(2[31* — Xy + 1)Wrn%,6r7“r+2

1 -
5(2Ba — &a)Wabany e “ (¥, — ;)2

1 B
+ (2B - o ) W,b P o2 (v, — Y,)2 (G.26)

_|_

The electron, muon and neutrino pressures and the Coulomb exchange pressure
are calculated in the same way to be

1w
Pe = TR e (G.27)
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1 2 O o4y, 3 4 Hy +k
P, = 5 k(g 5 MC ) + 3 M.C In s (G.28)
1w
P, — 2
247 (he)3 (G.29)
1/3\'"°
Pe = 3 <%> e2(Yony )3 (G.30)

Now there is an expression for the pressure as a function of the species frac-
tions and the baryon density. The fractions are themselves solvable given just
the baryon density, so by solving the equations given, one can evaluate the pres-
sure for a given density, which gives us then the equation of state.

To relate the number density to the mass density the following relation is used

c?p(Mp) = en + MpYpmy, + 1y Yumy, + 1y Yeme 4+ npY,m,,. (G.31)

This gives p in nuclear units (MeV fm > ¢2). To covert to astrophysical units, the
following factor is necessary:
MeV 1

g
s~ 1.782465 x 10]2@ (G.32)

fm
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