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Abstra
t

A new form of the e�e
tive nu
lear intera
tion is presented whi
h is density-

dependent and separable in 
oordinate spa
e. Cal
ulations are made of the prop-

erties of the even-even 
losed-shell nu
lei

16

O,

34

Si,

40

Ca,

48

Ca,

48

Ni,

56

Ni,

68

Ni,

78

Ni,

80

Zr,

90

Zr,

100

Sn,

114

Sn,

132

Sn,

146

Gd and

208

Pb as well as in�nite symmetri
 and

asymmetri
 nu
lear matter and neutron stars. Ground state observables are 
al-


ulated in the Hartree-Fo
k approximation. Corre
tions are 
al
ulated for binding

energies by summation of the perturbation series up to third order. The 
orre
-

tion terms in the series are found to be small and 
onvergent, giving 
on�den
e

that the method is appli
able to the intera
tion presented.
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Chapter 1

Introdu
tion

1.1 Nu
lear Stru
ture Theory

The s
ien
e of nu
lear stru
ture attempts to explain the phenomena arising in

the atomi
 nu
leus in terms of the protons and neutrons whi
h 
onstitute it and

the for
es under whi
h they intera
t. The type of phenomena whi
h are seen in-


lude the nu
lear mass, its size and shape, and the ri
h spe
tra of ex
ited states,

ea
h with 
ertain good quantum numbers and ex
itation energies whi
h may be

well-de�ned or broad resonan
es, and may be identi�able as single-parti
le or


olle
tive behaviour. In weakly bound nu
lei near the neutron drip line su
h ex-

oti
a as neutron skins and halos are in eviden
e. At the other extreme, near the

proton drip-line, proton radioa
tivity is observed. As well as these observables

in the time-independent problem, one observes phenomena in nu
lear rea
tions

whi
h a theory of nu
lear stru
ture needs to address su
h as the rea
tion 
ross

se
tions, �ssion barriers and lifetimes. The number of parti
les of a self-bound

nu
lear system ranges from two nu
leons in the deuteron to nearly three hundred

in the super-heavy nu
lei 
urrently being studied[1, 2, 3℄. Furthermore neutron

stars are thought to be made of nu
lear matter, bound due to gravitational for
es,

and under more extreme physi
al 
onditions than \ordinary" nu
lear matter, but

presumably subje
t to the same intera
tions.

The ability to explain all these phenomena is 
ompli
ated by two things. The

more fundamental of these is the fa
t that the nu
lear intera
tion is not fully un-

derstood, despite a 
onsiderable amount of e�ort spend in studying it. In fa
t,

Hans Bethe on
e suggested that more endeavour had been spent in studying the

nu
lear for
e problem than any other problem in the history of s
ien
e, and this

was in 1956[4℄. The for
e between two nu
leons must be ultimately des
ribed by

the 
ombined e�e
t of the for
es between their quark and gluon 
onstituents or

even from more fundamental 
onstituents, should su
h things exist. Work exists

whi
h des
ribes the for
es between observed parti
les as derived from the under-

lying quark-quark intera
tions[5℄ but, as yet, no full nu
leon-nu
leon intera
tion

derived just from more fundamental mi
ros
opi
 
onsiderations is available. All

1



CHAPTER 1. INTRODUCTION 2

intera
tions used in 
al
ulations of nu
lei 
ontain, at least in part, phenomenol-

ogy. That nu
leons are made of more fundamental 
onstituents is not to say that

one should be solving the many-body S
hr �odinger equation for a system of 3A (or

more) quarks. Sin
e nu
leons are the only parti
les a
tually observed in nu
lei, it

is 
ertainly to be expe
ted that an expression for the intera
tion binding the nu-


leons together 
an be written in terms of the nu
leon 
oordinates and quantum

numbers without ne
essary re
ourse to the presumed substru
ture. This argument

is analogous to the fa
t that one des
ribes atoms and mole
ules in terms of the

ele
tron 
oordinates and degrees of freedom even though su
h systems manifestly


ontain protons and neutrons.

The se
ond diÆ
ulty in produ
ing results in the �eld of nu
lear stru
ture is the


al
ulational 
omplexity involved in solving the mi
ros
opi
 equations of many-

body quantum me
hani
s, espe
ially given the rather 
ompli
ated nu
lear inter-

a
tions posited. At the present, and for the foreseeable future, approximations

need to be made to perform 
al
ulations of the majority of nu
lei. These approx-

imations are often 
onsiderable.

1.2 Nu
lear for
es and the many-body problem

1.2.1 Realisti
 Intera
tions

The most fundamental nu
leon-nu
leon intera
tions 
urrently used in nu
lear

stru
ture 
al
ulations are the so-
alled \realisti
" potentials. These are based

around the assumption that the for
e between two nu
leons is dominated by me-

son ex
hange. This approa
h agrees with the quark model at large separations

when the �nite meson size and underlying quark stru
ture are not relevant. The

short and intermediate range parts are phenomenologi
ally parameterized to �t

nu
leon-nu
leon s
attering data and the binding energy of the deuteron. Mod-

ern versions of these potentials, su
h as the Argonne v18 potential[6℄ are usually

used in 
onjun
tion with three-nu
leon potentials[7, 8, 9℄ sin
e three-nu
leon

e�e
ts seem to be important in nu
lei, as evin
ed by so-
alled Borromean nu-


lei, whi
h are bound and 
onsist of a 
ore and two loosely bound parti
les, but

whi
h would not be bound if one of these parti
les were absent. The ne
essity of

three-body intera
tion is also seen in the way the two-body intera
tions �tted to

two-body data alone fails to �t the binding energy of the triton and heavier nu
lei.

The great drawba
k with using a \realisti
" potential is that they are fun
tionally

rather 
ompli
ated, 
onsisting of many terms, ea
h dependent upon the states of

the parti
les, and they have a hard-
ore, whi
h is to say that the potential be-


omes very strongly repulsive at small separation, so that \obvious" te
hniques

of many-body quantum me
hani
s su
h as perturbation theory, or the standard

Hartree-Fo
k approximation may not be used and rather more 
ompli
ated te
h-

niques need to be implemented. In addition, these for
es are �tted to free nu
leon
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Figure 1.1: The

1

S

0

part of the Argonne v18 potential. The pp and nn potentials are

identi
al and the pn potential is slightly di�erent from both. The 
urve shows the strong

repulsion 
ommon to most realisti
 intera
tions.

data, so any e�e
ts whi
h arise only when many nu
leons are present are not a
-


ounted for, ex
ept by the addition of many-body for
es. Currently, no attempt

seems to be made to go beyond three-body intera
tions. Figure (1.1) shows the

dominant part of the Argonne v18 potential. Note that the strength of the term

for zero separation is � 3 GeV whereas the attra
tive mid-range part whi
h is re-

sponsible for the binding is only about � 100 MeV. In the energy s
ale of nu
lear

physi
s, a GeV is a very large energy { it is roughly the rest mass of a nu
leon.

There are a vast number of methods whi
h have been used to solve the many-

body S
hr �odinger equation with realisti
 intera
tions. The most venerable is the

Bruekner Theory[10℄, also known as the independent pair approximation whi
h

takes the short range 
orrelations into a

ount by summing the ladder series of

diagrams. Other su

essful te
hniques have been in the form of Fadeev [11℄,

Variational Monte-Carlo[12℄, Green's Fun
tion Monte-Carlo[13℄, Correlated ba-

sis fun
tion [14℄ and 
oupled-
luster[15, 16℄ 
al
ulations. These have allowed for

the study of a number of light nu
lei up to A � 7, as well as the spheri
ally sym-

metri


16

O and

40

Ca. As 
omputational te
hniques and 
omputer power advan
e,

one would expe
t to 
al
ulate heavier and heavier nu
lei with thesemethods; how-

ever, sin
e the 
omplexity of a full many-body problem in
reases 
ombinatorially

as a fun
tion of the number of parti
les, it is not expe
ted that one would be able

to 
al
ulate all, or even the majority of, known nu
lei in this way in the immediate

future.
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1.2.2 E�e
tive intera
tions

In using an e�e
tive intera
tion one is attempting to 
onstru
t a form of the nu
lear

for
e whi
h is typi
ally simpler in form than the realisti
 intera
tions and is eas-

ier to use within 
al
ulational frameworks amenable to the 
al
ulation of medium

and heavy nu
lei. For instan
e an e�e
tive intera
tion may be parameterized in

su
h a way as to avoid having a hard 
ore. This is not as unreasonable as it might

sound; if the for
e is intended for use in the 
al
ulation of �nite nu
lear properties

rather than, say, s
attering data, the Pauli ex
lusion prin
iple keeps the nu
le-

ons suÆ
iently far apart that they very rarely feel this hard 
ore repulsion. It is


hara
teristi
 of e�e
tive intera
tions that they are suited for spe
i�
 systems and


al
ulational te
hniques. They are widely used in single-parti
le models, whi
h

dominate the mi
ros
opi
 
al
ulations of medium and heavy nu
lei.

The G-matrix expansion[17℄ provides a link between the realisti
 and e�e
tive

intera
tions sin
e it derives a \renormalized potential" from a realisti
 intera
-

tion whi
h may be used for 
al
ulation in the same kind of situations as purely

phenomenologi
al e�e
tive intera
tions.

In single parti
le models it is assumed that ea
h nu
leon moves in an average

�eld due to the a
tion of the other nu
leons. By this assumption one transforms

the N-body problem into N one-body problems, whi
h are mu
h easier to solve.

Single parti
le models are often used as the starting point for more sophisti
ated


al
ulations. The ar
hetype of this paradigm is the shell-model[32℄, whi
h as-

sumes a given stati
 one-body potential whi
h 
reates a spe
trum of single-parti
le

states, o

upied by the nu
leons. The nu
leons in these states then intera
t with

ea
h other via e�e
tive intera
tions whi
h are either phenomenologi
al or mi-


ros
opi
ally derived from a realisti
 intera
tion to take into a

ount the Hilbert

spa
e assumed in the single parti
le model[33℄. Although this is a 
omputation-

ally easier pro
ess than the above methods with a full realisti
 intera
tion, one

must be near a 
losed shell in heavy nu
lei for a shell-model 
al
ulation to be fea-

sible. Again, as te
hniques and 
omputing advan
e, the boundaries of the nu
lear


hart of areas 
losed to the shell model will re
ede, but they will not be eliminated


ompletely for some time. Furthermore, the theoreti
al basis of the shell model

rests on a number of assumptions and approximations whi
h are not always well

justi�ed[18℄, although this is true of the use of e�e
tive intera
tions in general.

Furthermore, in the shell-model, there is typi
ally no link between the intera
tion

whi
h produ
es the mean �eld, the single parti
le states and all the ground state

properties, and the intera
tion whi
h a
ts between the valen
e nu
leons giving

rise to the ex
ited states.

1.2.3 Hartree-Fo
k 
al
ulations

The only fully mi
ros
opi
 models whi
h are, at present, used to 
al
ulate the

entire range of nu
lei are the Hartree-Fo
k(HF) mean �eld method and its rel-
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ativisti
 
ounterpart, the Relativisti
 Mean-Field(RMF) method. They provides

the bulk properties of the ground state and single parti
le spe
trum, whi
h 
an

then be used as a starting point for shell-model 
al
ulations, but from a nu-


lear e�e
tive intera
tion rather than an assumption. First introdu
ed in atomi


physi
s[19℄, the HF method was used to 
al
ulate nu
lear properties with a wide

range of intera
tions (see e.g. the exhaustive summary of Svenne[20℄), but it

was not until density-dependent intera
tions, su
h as Skyrme's intera
tion, used

by Vautherin and Brink[21℄, and the surfa
e delta intera
tion[44℄, were used

that a Hartree-Fo
k 
al
ulation produ
ed results whi
h �tted both ground-state

radii and binding energies at the same time. The key to this was the intera
-

tions' density-dependen
e, giving rise to an extra potential in the mean-�eld {

the so-
alled \rearrangement potential". Sin
e then, many parameterizations of

the Skyrme intera
tion have been made, as well as some modi�
ation of its fun
-

tional form. It has been applied to nu
lei a
ross the periodi
 table as well as to

neutron stars[22℄. A link between the density-dependent e�e
tive intera
tions

like that of Skyrme and the realisti
 intera
tions was provided by Negele[23℄.

Extended versions of Skyrme's intera
tion have even been used in shell-model


al
ulations to both generate the single parti
le basis and then, unaltered, as a

residual intera
tion[24, 25℄. By doing a shell model 
al
ulation, however, one

again limits the range of nu
lei that the te
hnique may be applied to.

Despite the great a
hievements of the modern e�e
tive intera
tions used in

mean-�eld 
al
ulations, they all have the 
hara
teristi
 of being short-, or zero-

range, whi
h makes them unsuitable for use in perturbation theory 
al
ulations,

sin
e the matrix elements involved are too large (the perturbation is not weak

enough).

This means that one of the simplest and most elegant te
hniques for a

ounting

for both single-parti
le and 
olle
tive behaviour, and for both ground and ex
ited

state properties within one framework, with the same intera
tion, is not available

for use with the for
es so far mentioned. The great utility of the perturbation

theory is that it is 
omputationally feasible to 
al
ulate the lowest order diagrams

for any nu
leus, and so one 
ould 
al
ulate a mu
h better approximation to the

exa
t wavefun
tion than in a mean-�eld alone without needing to stay 
lose to the


losed shells. As mentioned above, e�e
tive intera
tions may di�er in form quite


onsiderably from realisti
 intera
tions so that one need not have a short range

repulsion. So too, then, one 
an attempt to parameterize the e�e
tive intera
tion

in su
h a way that it is not of a very short range to use it in normal perturbation

theory.

Motivated by the ideas presented above, this thesis supposes that there exists

an e�e
tive nu
lear intera
tion with whi
h the te
hniques of standard many-body

perturbation theorymay be used to 
al
ulate observables, and that this intera
tion

is of 
omparable quality to 
ontemporary e�e
tive intera
tions. The fo
us is solely

on the ground states of spheri
al 
losed-shell nu
lei and nu
lear matter sin
e these

are the simplest systems to 
al
ulate and therefore present the most 
onvenient
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systems for 
reating a new e�e
tive intera
tion. The thesis is organised as follows:

Chapter 2 dis
usses the methods used to solve the many-body S
hr �odinger

equation for the intera
tion being used, whi
h itself is the subje
t of 
hapter 3,

in whi
h its form and 
hara
ter are expounded. Chapter 4 deals with some of the


omputational details and approximations whi
h a�e
t the 
al
ulation. Chapter

5 dis
usses the numeri
al 
hara
ter of the for
e and explores how the di�erent

parts of the for
e a�e
t observables. The following two 
hapters give the physi
al

results; Chapter 6 
ontains details of the nu
lear matter and neutron star 
al
ula-

tions and Chapter 7 presents the results of 
al
ulation with �nite nu
lei. Chapter

8 summarises the work.



Chapter 2

Many-Body Perturbation Theory

2.1 Single-parti
le theories

An oft-used te
hnique in quantum me
hani
s is to separate the Hamiltonian of an

insoluble problem into two parts, one of whi
h is solvable and the other not. The

te
hnique relies on the ability to 
hoose the separation su
h that the solvable part

gives the dominant e�e
t and the remaining part is small and may be treated as a

perturbation.

A useful way to perform this separation, in the 
ase of a many-body system

subje
t to two- (or more) body intera
tions, is to add and subtra
t a single parti
le

potential, U(r), term to the Hamiltonian to give

H = T(r)+ V

1

(r) + V(r

1

; r

2

) = [T(r)+ V

1

(r) +U(r)℄

| {z }

H

0

+V(r

1

; r

2

) -U(r)

| {z }

H

1

: (2.1)

The utility of this Ansatz is that the zeroth order problem of solving the many-

body S
hr �odinger equation with H

0

as the Hamiltonian may be a good approxi-

mation to the true solution and will, for a sensible 
hoi
e of U(r) be mu
h easier

to obtain. In general, models whi
h use this separation are termed singe-parti
le

or independent-parti
le models. Sin
e the independent parti
les are fermions,

whether a
tual nu
leons or quasi-parti
les, the ground state many-body wave-

fun
tion is a Slater determinant of single parti
le states, '

i

(r

i

),

�(r

1

; r

2

; : : : ; r

N

) = A

Y

i

'

i

(r

i

): (2.2)

Correlations are then de�ned as the 
orre
tions whi
h need to be added to the

independent parti
le model to arrive at the true solution. Sin
e the results of the

independent parti
le model depend upon the 
hosen potential, U(r), in Equation

(2.1) so, too, do the 
orrelations. When one talks about single parti
le 
al
ulations

already 
ontaining 
orrelations, as is often the 
ase with density-dependent HF


al
ulations[97℄, it is usually meant that one 
onsiders an e�e
tive intera
tion to

7
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be, in prin
iple, a renormalized realisti
 intera
tion. The solution of the e�e
tive

intera
tion in a single-parti
le model is then taken to in
lude both single-parti
le

and 
orrelation e�e
ts of the realisti
 intera
tion. Of 
ourse, a purely single-

parti
le model 
an never show 
ertain 
orrelation e�e
ts, su
h as the non-zero

o

upation probability of states above the Fermi level[26℄, unless one introdu
es

quasi-parti
les.

There are many ways to 
al
ulate these 
orrelations. The textbooks of Ring and

S
hu
k[28℄, deShalit and Feshba
h[27℄ and Eisenberg and Greiner[39℄ des
ribe

many of the methods used at the time of their publi
ations (up to 1980). Some

other methods were mentioned in the previous 
hapter. Presented here is the

te
hnique used in this Thesis, along with some mention of the relation to other

methods.

2.1.1 One-body potential

The pres
ription for generating the one-body part, U(r), fa
ilitating the separa-

tion of the Hamiltonian varies between approa
hes. One approa
h is to make the

one-body part essentially trivial by 
hoosing a well-know single-parti
le poten-

tial to augment the kineti
 energy term, su
h as a harmoni
 os
illator potential.

This is the approa
h usually taken by the shell model. In its simplest form the

shell model 
ontains only this spheri
al single parti
le potential with a spin-orbit

intera
tion [29℄ or for deformed nu
lei, the extension to a deformed os
illator ba-

sis was provided by Nilsson[30℄. More re
ently the residual intera
tion has been

treated in whi
h the 
al
ulational e�ort is spent in trying to solve the S
hr �odinger

equation exa
tly by diagonalizing the full Hamiltonian in the basis given by the

single parti
le potential. Typi
ally this is a large problem whi
h ne
essitates a

trun
ation in 
on�guration spa
e, although \no-
ore" 
al
ulations have re
ently

been performed for the lightest nu
lei[31℄. The large 
al
ulations are possible

sin
e the Hamiltonian matri
es are typi
ally sparse in this representation so 
an

be diagonalized by the Lan
zos method. These te
hniques are reviewed in [32℄.

By 
hoosing the single parti
le potential in this way, one separates the potential

whi
h generates the single parti
le states from the intera
tion, whi
h gives the

spe
tros
opy.

Another 
hoi
e of single parti
le potential is to pi
k the \best" potential. In

this 
ontext, best means the potential whi
h results in the Slater determinant so-

lution whi
h minimizes the expe
tation value of the full Hamiltonian, H = H

0

+H

1

.

The minimization pro
edure uses a variational prin
iple whi
h has, as the varia-

tional parameters, the single parti
le wavefun
tions in the Slater determinant.

Su
h a method for 
hoosing the potential U is 
alled the Hartree-Fo
k method

and is des
ribed in Appendix A; it is the te
hnique used in this work to obtain

the single parti
le states whi
h de�ne the many-body ground state. Being a vari-

ational te
hnique, only the lowest energy state is given as its solution, although

one 
an extend the te
hnique to ex
ited states by in
luding Lagrange multipliers
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and performing so-
alled 
onstrained Hartree-Fo
k 
al
ulations[28℄. One major

advantage with using the HF basis for perturbation 
al
ulations is that the Slater

determinant of the single parti
le states has the property that matrix elements of

the Hamiltonian between the ground state and any one-parti
le one-hole ex
ita-

tion vanish identi
ally. This property is known as Brillouin's Theorem[35℄ and

greatly simpli�es the perturbation 
al
ulations if the HF Hamiltonian de�nes the

unperturbed problem. In parti
ular it means that the lowest non-zero term in the

perturbation theory is the se
ond order term. It should be pointed out that most

HF 
al
ulations in nu
lei are 
arried out without the intent of \going further"; i.e.

it is possible to get a rather good des
ription of nu
lear ground states from the

mean-�eld alone. This fa
t is one of the premises of the present study { that most

of the ground-state properties arise from the mean{�eld. It is the additional 
on-

tention that by a judi
ious 
hoi
e of intera
tion one 
an 
al
ulate higher orders

of perturbation theory and thereby des
ribe e�e
ts beyond the mean �eld, whi
h


an not be a

ounted for by a single parti
le model alone.

2.2 Many-Body Perturbation Theory

The te
hniques of Many-Body perturbation theory provide a useful language for

dis
ussion of the methods of 
al
ulating 
orrelations, as well as giving an intu-

itive graphi
al representation. Appendix B gives a derivation of the Rayleigh-

S
hr �odinger perturbation theory and its appli
ation to a Hamiltonian with two-

body intera
tion, using the Hartree-Fo
k states as the referen
e state. Alterna-

tive derivations are widely available in the literature[34, 35, 36, 37, 38, 39℄. The

graphi
al te
hnique is dis
ussed in Appendix C for Hugenholz diagrams. The alter-

native formulation in terms of Goldstone diagrams are dis
ussed in the literature

(see e.g. [40℄).

The method used in this thesis is to evaluate diagrams dire
tly for the va
uum

amplitude diagram-by-diagram in a straightforward manner. This allows one to

write down the total energy of the system in a series

E = E

HF

+ E

2

+ E

3

+ � � � (2.3)

and to evaluate ea
h term one by one and examine the 
onvergen
e properties.

The 
ontributions to the energy, E, to third order are given by

E

HF

=

X

a<�

F

hajT+ V

1

jai+

1

2

X

ab<�

F

habj

~

Vjabi (2.4)

E

(2)

=

1

4

X

a 6=b<�

F

X

r6=s>�

F

habj

~

Vjrsihrsj

~

Vjabi

�

a

+ �

b

- �

r

- �

s

: (2.5)
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E

(3)

=

1

8

X

a 6=b<�

F

X


6=d��

F

X

r6=s>�

F

habj

~

Vjrsih
dj

~

Vjabihrsj

~

Vj
di

(�

a

+ �

b

- �

r

- �

s

)(�




+ �

d

- �

r

- �

s

)

+

1

8

X

a 6=b<�

F

X

r6=s>�

F

X

t6=u>�

F

habj

~

Vjrsihrsj

~

Vjtuihtuj

~

Vjabi

(�

a

+ �

b

- �

r

- �

s

)(�

a

+ �

b

- �

t

- �

u

)

+

X

a 6=b6=
<�

F

X

r6=s 6=t>�

F

habj

~

Vjrsih
rj

~

Vjatihstj

~

Vj
bi

(�

a

+ �

b

- �

r

- �

s

)(�

b

+ �




- �

s

- �

t

)

: (2.6)

It is to this order that the diagrams are 
al
ulated in this Thesis. The expli
it

diagrammati
 representation of these terms is given in Appendix C.

As a measure of the strength of the perturbative intera
tion, H

1

, the dimen-

sionless parameter � is de�ned as

� =

1

4

X

ab��

F

X

rs>�

F

�

�

�habj

~

Vjrsi

�

�

�

2

j�

a

+ �

b

- �

r

- �

s

j

2

(2.7)

whi
h is identi�ed as the average number of parti
les the se
ond order 
orrelation

ex
ites from the Hartree-Fo
k ground state.

The perturbation theory gives a series for any observable, not just the energy

sin
e it produ
es a series for the exa
t wavefun
tion, j	i, whi
h is of the form

j	i = j�

HF

i+

X

ab<�

F

X

rs>�

F

C

rs

ab

j�

ab

rs

i+ � � � (2.8)

where�

HF

is the Hartree-Fo
k ground state Slater determinant, and�

rs

ab

is a Slater

determinant with two parti
les ex
ited from the HF ground state into higher HF

orbitals. The ellipsis indi
ates that higher order 
orre
tions exists whi
h involve

ex
iting more parti
les from the HF ground state into higher states. The wave-

fun
tion is then expressed as a sum of Slater determinants. The perturbation

theory provides the 
oeÆ
ients, C

rs

ab

et
., in terms of the intera
tion potential H

1

.

This Thesis, however, does not address 
orre
tions to any observables but the

energy sin
e the perturbation series for two-body observables su
h as the energy

is thought to be mu
h larger than for one-body observables su
h as the density

if one uses the HF basis for perturbation theory. The purpose of this Thesis is

to explore the possibility of �nding a potential for whi
h the perturbation theory


onverges and provides a reasonable �t in HF order for the ground state of spher-

i
al nu
lei, rather than to 
al
ulate the large range of observables for all nu
lei,

whi
h remains for future work.

2.2.1 Density-Dependent Intera
tion

In Appendix B it is seen that the separation of the Hamiltonian into the unper-

turbed (H

0

) and perturbation (H

1

) parts takes pla
e in su
h a way that H

1

is just
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the two-body intera
tion and H

0

is the solution of the normal Hartree-Fo
k equa-

tion. The omission of the density-dependen
e in this HF equation means that the

methods used in this Thesis impli
itly involve the assumption that, at the level

of the perturbation theory, the densities are simple �xed fun
tions whi
h are not

related to the 
reation and annihilation operators and do not dire
tly result from

many-body for
es. If one did not make this assumption, the method would be-


ome too 
ompli
ated. One would 
ertainly be restri
ted to integral powers of the

� and � parameters and even then, the appearan
e of a density in the denominator

of a fun
tion would require spe
ial 
onsideration.

2.3 Other Methods

While the method in this Thesis involves summing, in prin
iple, all diagrams

in the perturbation expansion, in pra
ti
e, only a few are in
luded sin
e the

series 
onverges quite qui
kly. Other te
hniques used for nu
lear stru
ture


al
ulations involve summing in�nite series of diagrams. The Random-Phase-

approximation[42℄ (RPA) method may be derived from the time-dependent

Hartree-Fo
k equations[41℄, or by linearizing the equations of motion[39℄. This

is equivalent to summing the sub
lass of diagrams whi
h in
lude only the inser-

tions given in Figure 2.1[37℄.

In Brue
kner Theory[38℄ the ground state of a nu
leus is 
al
ulated using a

renormalized potential (the G-matrix) whi
h in
ludes the ladder diagrams, whi
h

is the series of diagrams featuring the insertion in Figure 2.2.

The se
ond order diagram (Appendix C, Figure C.4) features in both these se-

ries. In the third order the parti
le-parti
le diagram of Figure C.5 
ontributes to

the Brue
kner theory 
al
ulation and the parti
le-hole diagram to the RPA.

� � � �

Figure 2.1: Insertions in
luded in the RPA 
al
ulation

�

Figure 2.2: Insertion in the series 
al
ulated by Brue
kner theory



Chapter 3

Nu
lear For
e: Theory

Having dis
ussed some aspe
ts of nu
lear stru
ture theory, ways in whi
h it is

usually approa
hed, and dis
ussed the methods used in the present work to atta
k

the problem, it is 
lear that a new intera
tion needs to be used. The 
riterion

whi
h it must satisfy are that is must �t single parti
le properties well in the

Hartree-Fo
k approximation and be weak enough to produ
e small and 
onverging


orre
tions in perturbation theory for many-body observables, parti
ularly the

binding energy.

3.1 Nu
lear Intera
tion

The two-body for
e used in this work 
onsists of a sum of terms ea
h of whi
h is

separable in 
oordinate spa
e. Ea
h term 
onsists of produ
ts of one body opera-

tors of de�nite angular momentum, and the terms are 
lassi�ed a

ording to this

value as monopole, dipole and quadrupole terms for angular momenta l = 0, l = 1

and l = 2 respe
tively.

3.1.1 Monopole Intera
tion

The monopole intera
tion is in the form of a separable fun
tion, ea
h part of whi
h

is a s
alar. In 
oordinate spa
e it is written

V(r

1

; r

2

) = W

a

f

�

a

�

�

a

(r

1

)�

�

a

(r

2

)(1+ a

a

(�

+

1

�

-

2

+ �

-

1

�

+

2

) + b

a

�

1z

�

2z

)

+ W

r

f

�

r

�

�

r

(r

1

)�

�

r

(r

2

)(1+ a

r

(�

+

1

�

-

2

+ �

-

1

�

+

2

) + b

r

�

1z

�

2z

)

+ kr

2

1

�(r

1

)r

2

2

�(r

2

); (3.1)

where the fun
tion f

�

is de�ned as

f

�

=

"

Z

all spa
e

�

�

�

(r)d

3

r

#

-1

; (3.2)

12
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and W

a

, �

a

, �

a

, a

a

, b

a

, W

r

, �

r

, �

r

, a

r

, b

r

, and k are parameters to be �tted to

experimental data. The �rst two terms in Equation (3.1) are fun
tionally identi
al

in form, but have their own set of parameters. The subs
ript a denotes the at-

tra
tive term, so the strengthW

a

is taken to be negative. The subs
ript r denotes

the repulsive term, and W

r

is always taken to be positive.

In addition to this two-body intera
tion there is a spin-orbit for
e whi
h we

postulate as a one-body �eld of the Blin-Stoyle form[43℄. Its form is

V

s:o

(r) = 


1

r

��(r)

�r

l � s; (3.3)

where l is the orbital angular momentum operator for the parti
le and s is the

spin angular momentum operator. Note that this same Ansatz for the spin-orbit

intera
tion has been used previously in HF 
al
ulations with e�e
tive intera
tions

by Ehlers and Moszkowski[44℄ and Vautherin and Veneroni[45℄. It has a single

parameter 
 whi
h is �tted to the spin-orbit splitting of nu
lei.

3.1.2 Higher Multipole Intera
tions

The multipole intera
tions are written

V

D

(r

1

; r

2

) = W

D;q

1

;q

2

f

D

1

X

M=-1

(-1)

M

r

1

�(r

1

)Y

1M

(r̂

1

)r

2

�(r

2

)Y

1-M

(r̂

2

) (3.4)

V

Q

(r

1

; r

2

) = W

Q;q

1

;q

2

f

Q

2

X

M=-2

(-1)

M

r

2

1

�(r

1

)Y

2M

(r̂

1

)r

2

2

�(r

2

)Y

2-M

(r̂

2

): (3.5)

Here, W

D;q

1

;q

2

are 
onstant strength parameters for the dipole for
e, with q

1

=

q

2

= p giving the strength for the proton-proton intera
tion and q

1

= q

2

= n

for the neutron-neutron intera
tion. Similarly 
onstants W

Q;q

1

;q

2

and for q

1

= q

2

give the pp and nn quadrupole for
e strengths. In addition a term a
ting between

proton and neutron states in the quadrupole for
e is 
onsidered with a strength

W

Q;p;n

. The fun
tions f

D

and f

Q

are introdu
ed to 
ontrol the A-dependen
e of

the for
e. In prin
iple they may be of a similar form to the f of the monopole

for
e sin
e the integral of the density over all spa
e gives just the parti
le number

A. In the 
urrent work these fun
tions are taken to be A




, sin
e these terms

in the for
e are not in
luded in the mean-�eld and so no fun
tional variation is

performed where the results would depend on whether the for
e was written as

density-dependent or not.

In addition the Coulomb intera
tion is in
luded. The dire
t part is imple-

mented exa
tly and the ex
hange term is treated in the Slater approximation[46℄.
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3.2 Philosophy

Having stated the form of the for
e, some explanation is in order to des
ribe why

it is in the form it is. The following 
hara
teristi
s summarize the nature of the

intera
tion, the rationale of whi
h shall be dis
ussed here. The for
e is separable.

This term is used here rather loosely - in fa
t it is the sum of separable terms, but

this usage seems 
ommon enough in the literature to be used in the present 
ase,

as well. By separable, it is meant that the terms in the for
e are written as the

produ
t of a fun
tion of the (spa
e, spin and isospin) 
oordinates of parti
le one

multiplied by a fun
tion of the 
oordinates of parti
le two. Sin
e it 
annot matter

whi
h parti
le is labelled \one" and whi
h one is labelled \two", the two fun
tions

are always the same in ea
h term. Furthermore, the terms are separated a

ording

to the multipolarity of the one-body fun
tions whi
h make them up. Ea
h term in

the monopole intera
tion 
onsists of a produ
t of two l = 0 fun
tions. In the dipole

term the fun
tions are l = 1 and in the quadrupole term they are l = 2. Another

important aspe
t of the for
e is that itis density-dependent. The motivation for

writing the for
e in this way is dis
ussed in the se
tions below.

3.2.1 Separability and Multipolarity

The separability of the for
e was 
hosen for two reasons. The �rst one is some-

what histori
al, and is also a reason behind the splitting up of the for
e into

multipoles, and is based on the fa
t that a simple model of a separable for
e

was used as a residual intera
tion 
alled the pairing plus quadrupole (PPQ)

model[47, 48, 49, 50℄. In this older work, the intera
tion is not density dependent

and is used in a trun
ated spa
e of an harmoni
 os
illator potential. Their reasons

for 
onsidering su
h a separable intera
tion were that it would make the 
al
u-

lations mu
h easier so that the model would be appli
able, with 1960s 
omputer

te
hnology, to the 
al
ulation of a wide range of nu
lei. This is not really an issue

today, but the su

ess of the model showed that a separable intera
tion was a

viable way of parameterizing the e�e
tive nu
lear intera
tion and despite its sim-

pli
ity (or, perhaps, be
ause of it), it is still used in shell-model 
al
ulations[51℄.

The PPQ Hamiltonian la
ks a monopole intera
tion whi
h is ne
essary to give the

bulk properties of the nu
leus like the binding energy and single parti
le ener-

gies and to provide a me
hanism for saturation. If, then, one 
ould produ
e a

monopole intera
tion to 
omplement the higher multipole for
es, one would ob-

tain a full intera
tion whi
h 
ould be used for a mi
ros
opi
 des
ription of nu
lei

whi
h would both generate the one-body �eld and be used as the residual in-

tera
tion. A similar approa
h has been 
onsidered re
ently in the 
ontext of the

shell model[52℄. This gives some rationale behind why the for
e is split up into

multipoles and why the dipole and quadrupole terms are separable. The sepa-

rability of the higher multipoles is not really a suÆ
ient reason for making the

monopole for
e separable. In fa
t the main reason for doing so is so that the for
e



CHAPTER 3. NUCLEAR FORCE: THEORY 15

will be weak enough to perform perturbation theory. Standard e�e
tive intera
-

tions, su
h as the zero-range Skyrme intera
tion are too strong for this. In the

paper whi
h �rst used the Skyrme intera
tion in the HF approximation[21℄ the

authors a
knowledge \a perturbation 
al
ulation would a
tually diverge be
ause

of the zero range". It is known that separable intera
tions, several of whi
h are

des
ribed in a review by Kerman[53℄, are weak enough for perturbation theory

to be performed[54℄ so extending the separable multipole philosophy of the PPQ

model to in
lude the monopole intera
tion seems like a likely path to su

ess. On

the other hand, the quality of the results from earlier separable intera
tions has

been rather poor by today's standards. The for
e of Bressel et al.[55℄ was too

strong for normal perturbation theory to 
onverge and the set of partially sep-

arable potentials of Rouben, Riihim�aki and Zipse[56, 57, 58℄ have far too high

binding energies in nu
lear matter. The most su

essful separable potential has

probably been that of Tabakin[59℄ whi
h has been used in HF plus perturbation


al
ulations similar to the present work[60, 54℄ but the �nite nu
lear properties

of this for
e are not of the same quality as modern e�e
tive intera
tions.

3.2.2 Density-dependen
e

Neither the PPQ intera
tion as previously 
on
eived nor separable intera
tions

of monopole form have been density-dependent. In the 
ase of the residual in-

tera
tions, whi
h is to say intera
tions between nu
leons whi
h determines the

spe
tros
opy after the ground state is 
al
ulated or assumed, this has led to them

to be 
onsidered in a restri
ted spa
e. To do otherwise would be problemati


sin
e they have an in�nite range. By in
luding a density-dependen
e the range


an be limited in the for
e itself and no trun
ations need to be made in the 
al-


ulation to avoid su
h physi
al problems as an in�nite potential. In the 
ase of

the monopole intera
tion, used to generate the bulk properties of the nu
leus, it

was found that without the density dependen
e and the extra \rearrangement"


ontribution to the binding energy whi
h 
omes from it in the Hartree-Fo
k ap-

proximation, it was not possible to simultaneously �t nu
lear radii and binding en-

ergies, for attempts to do so with density-independent separable intera
tions, see

Kerman's review[53℄. The introdu
tion of density-dependen
e with the Skyrme

intera
tion[21℄ and the �nite-range Gogny intera
tion[62℄ 
hanged this feature of

HF 
al
ulations and shifted the fo
us of e�e
tive nu
lear intera
tions to the 
lass

of density-dependent intera
tions.

3.2.3 Range

As well as being density-dependent, other su

essful phenomenologi
al e�e
tive

intera
tions are all 
hara
terised by a short range. In the 
ase of Skyrme's in-

tera
tion the range is zero. In the Gogny intera
tion parts of the Skyrme for
e

were repla
ed by a �nite range Gaussian whi
h resulted in a for
e whi
h drops
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o� qui
kly as the nu
leons move apart. The separable density-dependent for
e

stands in 
ontrast to these in that the for
e is felt at long distan
e as well as short.

From the terms of the form

V(r

1

; r

2

) � �(r

1

)�(r

2

) (3.6)

it is seen that the only requirement for the for
e to be felt between two nu
leons

is that both the nu
leons are situated inside the nu
leus in a region where the

density is non-zero.

3.3 Term by term rationale

3.3.1 HF Mean �eld

The Hartree{Fo
k energy, E

HF

, and mean �eld are derived in Appendix E and the

results are show here for dis
ussion. The energy is

E
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= T + E
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where T is the kineti
 energy and E


oul

is the Coulomb energy,

E


oul

=

1

2

e

2

Z Z

d

3

r
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p
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The various quantities N and M with subs
ripts are integrals involving the one-

body densities (in the 
ase of the N fun
tions) or the nonlo
al densities (the M

fun
tions). They are all fully de�ned in the Appendix E.

The lo
al Hartree{Fo
k potential is
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where the fun
tions G(x) are de�ned in the Appendix E. The nonlo
al Hartree{

Fo
k potential is

U
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and the state-dependent spin-orbit term is

U

so

(x)�

b
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(x): (3.11)

The number w

b

is a weight fa
tor and the density �

w

(x) is the spin-orbit

weighted density as de�ned in Appendix E.

This is just the potential whi
h arises from the monopole for
e. As shown

in Appendix A, the Hartree term due to the multipole for
es is zero for 
losed-

shell nu
lei and the ex
hange term is assumed to be negligible for the purposes of


al
ulating the mean-�eld. In addition, the Coulomb potential is

U


oul

(r) = e

2

Z

d

3

r

0

�

p

(r

0

)

jr - r

0

j

- e
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�

!

1=3

�

1=3

p

(r): (3.12)

3.3.2 Density dependen
e

Having de
ided to try to �nd a for
e whi
h was separable and density-dependent,

the most obvious 
hoi
e seemed to be a term of the form � �

�

(r

1

)�

�

(r

2

). Perhaps a

form like this with � = 1 would be the most obvious 
hoi
e, but parameters need

to be in
luded to give one the degrees of freedom ne
essary to �t nu
lei. A term

like this, with just a 
onstant strength, has the problem that its 
ontribution to

the total energy goes roughly as A

2

not A, so it does not provide saturation of the

energy. Furthermore, the dire
t term it gives in the HF potential has a 
oeÆ
ient

whi
h varies wildly a
ross the nu
lear 
hart, whereas it is known that the nu
lear

density and the depth of the single-parti
le potential is quite independent ofA, so

density-dependent HF potential should have largely A-independent 
oeÆ
ients,
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as one �nds with the su

essful Skyrme potential[21℄. The reason for this too-

strong dependen
e is that the dire
t energy of a separable for
e is always going

to have the square of an integral of some fun
tion of the density, whi
h in the

present 
ase is roughly proportional to A, when it would be preferable to have

just one su
h fun
tion. The remedy is to in
lude in the 
oeÆ
ient to the term a

fun
tion whi
h looks like one of these integrals and has a parameter whi
h 
an be

made, more-or-less, to 
an
el it out. When
e the f parameter,

f �

1

R

�

�

(x)d

3

x

; (3.13)

whi
h 
an
els one of the two fa
tors of the N integral in the energy

N �

Z

�

1+�

(x)d

3

x: (3.14)

In the dire
t HF potential, there is one fa
tor of f and one ofN so setting 1+� = �

gives an A-independent 
oeÆ
ient to the density fun
tion in the mean-�eld whi
h

enables one to �t the whole range of nu
lei with similar depths of the mean-�eld

potential and similar 
entral densities. The possibility exists to vary the 
ondition

� = � + 1 to 
hange the �t, but only small variations away from this turn out to

produ
e anything sensible.

Some 
onsiderable e�ort was taken to try to �t a one-termed for
e of this form

to a wide range of nu
lei. By one-termed it is meant that the for
e 
onsisted only

of the kineti
, and Coulomb terms plus a one-termed potential of the form of the

�rst line in Equation ( 3.1) without the se
ond line. Although it was possible to �t

the properties of a single nu
leus this way, no overall parameterization presented

itself, so a modi�
ation of the for
e was ne
essary. So far there is a term with a

negative strength whi
h, in the mean �eld, goes as U(x) � �(x). A hint was taken

from the Skyrme-like for
es, whi
h, as well as the leading term (proportional to t

0

{ see [21℄) have a extra term with an overall positive (i.e. repulsive) strength and

a higher power of the density (the term proportional to t

3

. Therefore, an extra

term in the separable potential, like the �rst, but with its own set of �, � and

strength (W) parameters is added. This is se
ond line of Equation(3.1).

3.3.3 Isospin-dependen
e

Without this term there is nothing in the for
e whi
h a

ounts for the di�erent

physi
s whi
h arises in nu
lei with extreme values of isospin. The ne
essity for

su
h and e�e
t has been known for a long time, whi
h is re
e
ted in the earliest

semi-empiri
al mass formul�[76℄ by the in
lusion of the asymmetry term. The


onventional 
hoi
e for introdu
ing isospin-dependen
e in a two-body intera
tion

is to add a term with the operator �

1

� �

2

or equivalently the isospin proje
tion

operator P

�

. In the present 
ase there is a slightly generalized form of the operator

�

1

� �

2

.
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The isospin matri
es are just the Pauli spin matri
es

�

�

=

 

0 1

1 0

!

�

y

=

 

0 -i

i 0

!

�

z

=

 

1 0

0 -1

!

(3.15)

and the isospin operator is

t =

1

2

�

the a
tion of whi
h on proton and neutron states is

t

z

jpi = -jpi; t

z

jni = jni: (3.16)

One 
an de�ne raising and lowering operators whi
h have the following properties:

t

+

jpi = jni; t

-

jni = jpi; (3.17)

with other operations zero:

t

-

jpi = t

+

jni = 0: (3.18)

These operators 
an be expressed in terms of the operators t

�

, t

y

and t

z

as

t

+

= t

�

+ it

y

; t

-

= t

�

- it

y

; (3.19)

and the reverse relations are
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1

2
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+ t
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y
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1

2i
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i

): (3.20)

Now rewrite the operator �
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� �
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�
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; (3.21)

where the � raising and lowering operators are the same as those for t (3.17) { i.e.

they turn proton states in to neutron states and vi
e versa with no extra fa
tor.

Generalizing this to allow di�erent parameters for the �rst two terms and the

last term allows one to have a for
e whi
h breaks isospin symmetry, whi
h is to

say the p-p, n-n and n-p for
es are not ne
essarily the same strength. The fa
tor

multiplying the density-dependent terms is then

(1+ a

�

(�

+

1

�

-

2

+ �

-

1

�

+

2

) + b

�

�

1z

�

2z

); (3.22)

with � = a; r for the attra
tive and repulsive terms respe
tively.

Having this more general isospin operator gives one more degrees of freedom

in �tting the for
e. Some modern realisti
 for
es break isospin symmetry, su
h as

the Argonne v18[6℄ potential and CD-Bonn[63℄, whi
h they do be
ause it �ts the

experimental data better[64℄. In an e�e
tive intera
tion, then, one should not be

afraid of doing so.
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3.3.4 Surfa
e Term

The for
e as 
onstru
ted so far depends only on themagnitude of the density in the

vi
inity of the intera
ting nu
leon. This means that the for
e is mu
h weakened

for nu
leons at the surfa
e, over the region where the density is dropping. The

surfa
e, however, ought to play an important part in the intera
tion sin
e it is

the weakly bound nu
leons whi
h must take part in most s
attering events. The

form of the surfa
e term is 
hosen to be a derivative of the density sin
e this

will be peaked at the surfa
e. The separable form was again 
hosen so that the

perturbation theory matrix elements would be suitably small and the Lapla
ian

operator was 
hosen so that ea
h one-body fun
tion in the separable for
e would

be a s
alar.

3.3.5 Multipole terms

The reasons for in
luding a multipole terms have been mentioned already. The

parti
ular form is that of the well-known separable multipole for
es ex
ept that a

density-dependen
e is added to allow the for
e to be used in an HF 
al
ulation in

the full spa
e.

3.4 Choosing parameters - Experimental observables

The parameterization of the for
e is 
hosen in a way that, it is hoped, may lend

itself to the des
ription of nu
lear properties. The 
riterion, then, for 
hoosing

the parameters is to �nd the set whi
h �ts observable data the best. The fun
tion

whi
h des
ribes the quality of the �t is the Chi-squared fun
tion whi
h is de�ned

as

�

2

(C

1

� � �C

N

) =

N

X

i

(C

i

- X

i

)

2

e

2

i

; (3.23)

where i sums over all the observed quantities, C

i

is the 
al
ulated values of the

observable, X

i

is the experimental value and e

i

is the error in the experimental

value, so that the better-known observables are given greatest weight.

3.4.1 Nu
lei

To explore this separable intera
tion, a spheri
al HF 
ode, whi
h 
an be used with


losed shell nu
lei, has been written. In addition it provides a basis in whi
h

perturbation theory 
al
ulations may be performed. Only a few nu
lei are truly

spheri
al but it makes sense when developing a new intera
tion to begin with the


omputationally more simple 
ases and pro
eed to more diÆ
ult 
al
ulations only

when one has shown the simple 
ases work. The nu
lei taken in the �t in this work
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nu
leus

16

O

34

Si

40

Ca

48

Ca

48

Ni

56

Ni

68

Ni

78

Ni

Z 8 14 20 20 28 28 28 28

N 8 20 20 28 20 28 40 50

nu
leus

80

Zr

90

Zr

100

Sn

114

Sn

132

Sn

146

Gd

208

Pb

Z 40 40 50 50 50 64 82

N 40 50 50 64 82 82 126

Table 3.1: Nu
lei in
luded in �t

are shown in table 3.4.1. Most of the numbers N and Z for the nu
lei 
onsidered

are generally 
onsidered to be magi
. 40 is typi
ally seen to be a shell 
losure

(the fp shell) but the next state (g

9=2

) lies very 
lose above it; there is not a large

shell gap. 14 is not usually 
onsidered to be a magi
 number, but the spin-orbit

splitting between the �rst p-states in light nu
lei is quite large so that it is a good


losed sub-shell. The same is true of 64 as of 14 where the splitting between the

d states provides a sub-shell 
losure and a moderate gap.

Data for these nu
lei, as des
ribed in the next se
tion are given in Chapter 7,

in whi
h the 
omparison of 
al
ulated and experimental properties is dis
ussed.

3.4.2 Observables

The following observables are used in the �t:

� Ground state binding energy.

The mass, M, of a nu
leus is

M(Z;N) = Zm

H

+Nm

n

- B(Z;N)=


2

: (3.24)

It is smaller than the mass of its isolated 
onstituents, Z hydrogen atoms and

N neutrons by an amount known as the binding energy. It is the energy of

the intera
tion of the nu
leons and is always positive for a bound nu
leus.

It is related to the energy E(Z;N) by the relation

E(Z;N) = -B(Z;N): (3.25)

E is the quantity evaluated in quantum me
hani
s as the expe
tation value of

the total Hamiltonian of the system of Z protons andN neutrons bound in the

nu
leus. It is the most reliable observable for ground state properties sin
e it


an measured quite easily and the observed quantity is dire
tly 
omparable

to the 
al
ulated expe
tation value.

� Single parti
le energies
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The single parti
le energies are not observables as su
h in that there is no

operator whi
h a
ts on the many-body wavefun
tion to give as its expe
ta-

tion value a single parti
le energy. Koopmans' theorem [65, 35℄ for density-

independent Hartree-Fo
k theory shows that the di�eren
e in energy be-

tween a nu
leus E(N;Z) and a nu
leus E(N;Z - 1) or E(N - 1; Z) is equal to

the single parti
le energy of the nu
leus whi
h was removed. With a den-

sity dependent potential it is no longer true; the removal of a nu
leon alters

the density making the for
e 
hange. This means that the remaining nu
le-

ons \re-arrange" themselves to �nd the new lowest-energy 
on�guration. In

addition, as pointed out by Brue
kner and Goldman[68℄, on
e a parti
le is

removed, its set of quantum numbers be
omes available as an intermediate

state to the remaining nu
leons for s
attering events whi
h will results in

perturbative 
orre
tions. In the present density-dependent HF 
al
ulation,

the e�e
t of a 
hange in the ground state density is already taken into a
-


ount so that for the least bound state there is no 
orre
tion but the removal

of more deeply bound states may 
ause a substantial 
orre
tion. No 
al
u-

lation along these lines is made in the present 
ase. A similar 
al
ulation by

K�ohler[69℄ shows that the 
orre
tion for the least bound states is small but

the 
orre
tion to deeply bound states may be as mu
h as several MeV.

Despite these 
aveats, energies and quantum numbers 
an be assigned to

resonan
es seen in s
attering experiments and the results of nu
lear strip-

ping or pi
kup rea
tions whi
h tally with the expe
ted single parti
le states

predi
ted by mean-�eld models. Although the absolute values of experimen-

tal single parti
le energies 
an not be 
ompared with density-dependent HF

values exa
tly, at least the relative orderings may be.

� Form fa
tors

The form fa
tor of a given density distribution is its Fourier transform:

F(q) =

Z

d

3

r e

ik�r

�(r): (3.26)

For spheri
ally-symmetri
 
harge distributions the expression redu
es to

F(k) = 4�

Z

1

0

dr r

2

j

o

(kr)�(r); (3.27)

where j

0

= sin(x)=x is the zeroth order spheri
al Bessel fun
tion. The 
harge

form fa
tor F

C

(k) is related to the experimental ele
tron s
attering 
ross-

se
tion[66℄

d�

d


(k) / jF

C

(k)j

2

: (3.28)

The 
harge density di�ers from the proton density in that it a

ounts for the

�nite proton size. The pres
ription for doing this in the present work is to
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fold the intrinsi
 proton density with the nu
lear proton density whi
h is ap-

proximated by a Gaussian �tted to the proton size. This method is the same

as that used by Negele[67℄ ex
ept that he also 
onsiders a 
entre-of-mass


orre
tion. In Fourier spa
e, the 
orre
tion be
omes a simple produ
t of

form fa
tors. Given the assumption of a Gaussian form for the single proton

density, the Fourier transform is also a Gaussian and is, with a numeri
al �t

to the proton size,

F

�

(k) / e

-

(0:65k)

2

4

: (3.29)

The 
harge form fa
tor is then

F

C

(k) = NF

p

(k)F

�

(k); (3.30)

and is normalized so that F(0) = 1.

� Radii

The mean square radius asso
iated with a density distribution is de�ned, for

a spheri
al distribution, as

hr

2

i

q

�

R

dr r

4

�

q

(r)

R

dr r

2

�

q

(r)

: (3.31)

The subs
ript q labels the density and 
ould be an isospin number to give

the proton or neutron densities, or a label to indi
ate that it is the 
harge

density, or the total parti
le density. The root mean square (rms) radius is

then de�ned as

r

rms;q

�

q

hr

2

i

q

: (3.32)

The rms radius of the 
harge density 
al
ulated using the intera
tion may be


ompared with that of the 
harge density 
al
ulated as the Fourier transform

of the ele
tron s
attering form fa
tor.



Chapter 4

Computational Implementation

4.1 HF equations in a Basis

The Hartree-Fo
k equations involve a self-
onsisten
y problem in that the poten-

tial in the one-body S
hr �odinger equation depends on the wavefun
tions whi
h

result as a solution of the equation. The usual method of solution of the HF

equations is an iterative pro
edure shown s
hemati
ally in �gure 4.1.

Make an initial guess of the

single parti
le wavefun
tions

?

Constru
t new potential from

wavefun
tions and solve HF

equation

?

Does the solution of the

HF equation yield wavefun
-

tions di�erent from those

used to 
reate the potential?

6

yes

Equations are solved

?

no

1

2

3

4

Figure 4.1: S
hemati
 representation of the pro
edure for solving the HF equations

24
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Step 2 in Figure 4.1 is the one whi
h 
an be diÆ
ult to a

omplish. Constru
ting

the potential from the wavefun
tions 
an pose some diÆ
ulty sin
e the potential

in
ludes the Fo
k (ex
hange) term whi
h involves multidimensional integration for

the fun
tions denoted asM and G in the expression for the Hartree-Fo
k potential

(E.91). In the 
ase of spheri
al nu
lei, the multidimensional integrals are never

more than two-dimensional and are evaluated dire
tly in 
oordinate spa
e using

the method of Gaussian quadrature[70℄.

The Hartree-Fo
k equations are integro-di�erential equations. The way they

are usually solved it by either dire
t numeri
al solution on a grid, or expansion

in a basis and the transformation to a matrix equation. In the present work it

was found that the extremely non-lo
al 
hara
ter of the potential, as well as the

strong density-dependen
e, makes the �rst te
hnique numeri
ally unstable so the

se
ond method was used.

To solve theHartree-Fo
k equations by basis expansion, a basis is 
hosen whi
h

is taken to be the simple harmoni
 os
illator. The 
hoi
e of the os
illator is taken

be
ause the eigenstates are analyti
ally 
al
ulable and matrix elements of simple

fun
tions (su
h as the kineti
 energy) are already known. One pro
eeds by expand-

ing a Hartree-Fo
k wavefun
tion, '

a

, in a trun
ated basis of harmoni
 os
illator

wavefun
tions, �

�

,

'

a

(x) =

X

�

C

a�

�

�

(x); (4.1)

where a represents all the quantum numbers of the HF state and � represents all

the quantum numbers of the harmoni
 os
illator state. x represents all relevant


oordinates (in
luding spin and isospin).

The symmetries of the problem are in
luded in the basis wavefun
tions. The

spheri
ally symmetri
 harmoni
 os
illator wavefun
tions are used and the HF

wavefun
tions are assumed to have the same symmetries:

'

a

(x) = R

N

a

j

a

l

a

(x)Y

j

a

l

a

m

a

(x̂) �

�

a

=

X

n

�

C

(lj�m)

a

N

a

n

�

R

n

�

l

�

(x)Y

j

�

l

�

m

�

(x̂)�

�

�

Æ

l

a

l

�

Æ

j

a

j

�

Æ

m

a

m

�

Æ

�

a

�

�

; (4.2)

where the relevant quantum numbers are written out in full. Here, the fun
tion

R is the radial part of the HF wave fun
tion and the fun
tion R is the radial part

of the os
illator wave fun
tion (see Appendix D). The rest of the wave fun
tion is

kept the same in the two representation in Equation (4.2) so the HF wavefun
tions

are only, in fa
t, expanded in the prin
iple quantum number. Rather then always

make this expli
it, the expansion 
oeÆ
ients may be more frequently written in

the more 
ompa
t form (4.1). The fun
tions � are isospinors and Y are spinor-

spheri
al harmoni
s, whi
h are the tensor produ
t of a spheri
al harmoni
 and a

spinor:

Y

ljm

j

=

X

m

l

m

s

hlm

l

1=2m

s

jjm

j

iY

lm

l

�

1=2m

s

: (4.3)
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Note that this basis expansion provides a 
onvenient way to 
hoose the initial

wavefun
tions in step 1 { they may be taken as the harmoni
 os
illator fun
tions.

Now 
onsider the Hartree-Fo
k equation from appendix A (A.6)

�

i

'

i

(x) =

"

-

�h

2

2m

r

2

+ u(x) +

Z

dy�(y)v(x; y)

#

'

i

(x) -

Z

dy�(x; y)v(x; y)'

i

(y): (4.4)

This general HF equation does not expli
itly in
lude the rearrangement potential,

sin
e the form of the 
ontribution of the rearrangement term to the HF lo
al and

non-lo
al potentials depends on the exa
t form of the intera
tion. However, it is

known from appendix E that the rearrangement potential for the intera
tion under

study 
ontributes lo
al and non-lo
al terms in just the form of the above equation

with di�erent integrands. Therefore the results that follow will hold true for a

density-dependent intera
tion also, with suitable values of the lo
al and nonlo
al

HF potentials.

One inserts the relation (4.1) into the above HF equation (4.4):

�

i

X

�

C

�i

�

�

(x) =

"

t(x) + u(x) +

Z

dy�(y)v(x; y)

#

X

�

C

�i

�

�

(x)

-

Z

dy�(x; y)v(x; y)

X

�

C

�i

�

�

(y); (4.5)

and a
ts at the left with

R

dx�

�

�

(x); to give

�

i

X

�

C

�i

Z

dx�

�

�

(x)�

�

(x) =

Z

dx�

�

�

(x)

"

t(x) + u(x) +

Z

dy�(y)v(x; y)

#

X

�

C

�i

�

�

(x)

-

Z

dx�

�

�

(x)

Z

dy�(x; y)v(x; y)

X

�

C

�i

�

�

(y)

�

i

C

�i

=

X

�

h

��

C

�i

; (4.6)

whi
h is of the form of a matrix-eigenvalue equation

hC = �C; (4.7)

in whi
h h is the matrix whose elements are those of the HF Hamiltonian eval-

uated between the os
illator basis states and C is the matrix of expansion 
oef-

�
ients of the HF wavefun
tions in terms of the harmoni
 os
illator wavefun
-

tions. The Hartree-Fo
k equations written in this way are also 
alled Roothan's

equations[71℄. The pro
edure des
ribed in Figure 4.1 is implemented then by

making an initial guess for the matrix C. This then enables one to 
al
ulate the

densities with whi
h the matrix h is 
al
ulated. The matrix h is diagonalised to

yield eigenve
tors, C

0

and eigenvalues � . If the new set of eigenve
tors C

0

equal
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the old set C then the problem is solved. In pra
ti
e, the quantity whi
h is 
he
ked

for 
onvergen
e is the Hartree-Fo
k energy.

Owing to the symmetries in (4.2), the Hamiltonian matrix h is in blo
k-diagonal

form with sub-matri
es labelled a

ording to the quantum numbers j, l, and �.

This is a great aid in 
al
ulation sin
e it requires only the diagonalisation of small

matri
es.

4.1.1 Cal
ulation of densities

To evaluate the HF �eld and energy, one must obtain the spatial density. Sin
e

this density depends upon the HF wavefun
tions, it 
an be represented in terms

of the harmoni
 os
illator wavefun
tions:

�(x) = �

p

(x) + �

n

(x);

�

p;n

(x) =

X

a<�

F

2p;n

'

�

a

(x)'

a

(x)

=

X

a<�

F

2p;n

X

��

C

�

a�

C

a�

R

n

�

l

�

(x)R

n

�

l

�

(x)Y

�

l

�

j

�

m

�

(x̂)Y

l

�

j

�

m

�

(x̂)Æ

l

�

l

�

Æ

j

�

j

�

Æ

m

�

m

�

=

X

a<�

F

2p;n

X

n

�

n

�

X

ljm

C

�

a�

C

a�

R

n

�

l

(x)R

n

�

l

(x)Y

�

ljm

(x̂)Y

ljm

(x̂)

=

X

a<�

F

2p;n

X

n

�

n

�

X

lj

C

�

a�

C

a�

2j+ 1

4�

R

n

�

l

(x)R

n

�

l

(x); (4.8)

assuming all the m-sub-states for ea
h j-shell are �lled. Note that ea
h single-

parti
le wavefun
tion exhibits a (2j+ 1)-fold degenera
y.

The fa
t that the density is represented in an analyti
 form is a great help

when it 
omes to evaluating the derivative of the density sin
e the derivative of

the os
illator fun
tion is itself an analyti
 expression (See Appendix D).

4.2 Perturbation Corre
tions

The expressions for the perturbation 
orre
tions to the energy may also be simpli-

�ed due to the assumption of spheri
al symmetry. This redu
tion is more involved

than for the densities and is presented in Appendix F .It is the expressions derived

in that Appendix whi
h are dire
tly 
omputed and presented in Chapter 7.

4.3 Convergen
e in basis expansion

If the HF wavefun
tions were expanded in an in�nite basis then solving the matrix

equation would be exa
tly equivalent to solving the S
hr �odinger equation. It is,
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of 
ourse, impossible to solve an in�nite-dimensional matrix eigenvalue problem

so the basis must be trun
ated at some value of prin
ipal quantum number {

the trun
ation in other quantum numbers is governed by the observed single-

parti
le states. It is thus ne
essary to understand the e�e
ts of su
h a trun
ation

on the physi
al results of the HF problem. Related to this is the fa
t that the

os
illator basis expansion is 
hara
terized by a size parameter b (see Appendix D),

or equivalently its energy quantum �h!. In a �nite basis expansion the 
hoi
e of b

will a�e
t the results sin
e for one value of b the fra
tion of the HF wavefun
tions

whi
h overlap with os
illator states outside the spa
e will be di�erent from that for

another value of b. The pres
ription taken in this work is that sin
e a variational

prin
iple is at play, the parameter b is treated as an extra variational parameter.

For a given 
al
ulation, only a global b is 
hosen, whereas in some previous work

ea
h single parti
le state is given the os
illator parameter whi
h produ
es the

largest overlap with the a
tual wavefun
tion[67℄. The justi�
ation for using a

single parameter is that the 
onvergen
e properties as a fun
tion of basis size

seem to be good enough so introdu
ing more b parameters would only result in a

more 
ompli
ated 
al
ulation.

Sin
e it is desirable to apply this theory to all nu
lei, in
luding those whi
h are

weakly bound and have extended wavefun
tions, and also sin
e the perturbation

theory 
al
ulation involves the use of ex
ited and 
ontinuum wavefun
tions, 
on-

sideration must also be taken into a

ount of the extent to whi
h it is possible

to represent the wavefun
tions of unbound single parti
les, i.e. plane wave-like

states, as an expansion in terms of eigenstates of an in�nite potential, whi
h pro-

du
ed only bound states.

4.3.1 Trun
ation e�e
t in Hartree-Fo
k

Figures (4.2) and (4.3) show the Hartree-Fo
k energy for a sample parameteriza-

tion of the for
e used to 
al
ulate the nu
leus

40

Ca as a fun
tion of the os
illator

size parameter, b, and the number of prin
iple quantum numbers, N, in the ex-

pansion. The �rst plot shows that as one adds more states, the dependen
e on b

be
omes mu
h 
atter. This is to be expe
ted sin
e in the limit of an in�nite ex-

pansion, the set of os
illator states forms a 
omplete set no matter what the size

parameter is. One also sees from Figs. (4.2) and (4.3) that the minimum o

urs at

di�erent values of b as the size of the spa
e is in
reased. The se
ond �gure shows

more detail for the 
ases with larger N. In this plot one gets a view of the 
onver-

gen
e of the HF energy with in
reasing spa
e size and sees the rather 
ompli
ated

stru
ture in the dependen
e of the energy on b. For the larger spa
e sizes one

observes se
ondary minima whi
h, as one varies parameters, 
an take over as the

true minimum.

The 
onvergen
e of the Hartree-Fo
k energy as a fun
tion of spa
e size is shown

numeri
ally in Table (4.1). The third 
olumn shows the pleasing result that as one

adds more and more states in the basis expansion, the 
hange in the HF results
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Figure 4.2: Hartree-Fo
k energy, E

HF

, as a fun
tion of os
illator parameter, b, for dif-

ferent Hilbert spa
e sizes in

40

Ca. The 
rosses indi
ate the minima. The numbers on the

plot show the size of the prin
ipal quantum number spa
e.

be
ome less and less. Also shown is the 
onvergen
e of the se
ond order energy


orre
tion as a fun
tion of spa
e size. This also 
onverges to six signi�
ant �g-

ures by the time 20 states are rea
hed, but as one sees from the last 
olumn,

the 
onvergen
e is somewhat slower than for the HF energy. This 
onvergen
e is

represented graphi
ally in Figure 4.4.

4.3.2 Representation of 
ontinuum states

In HF 
al
ulations of nu
lei around the valley of stability the 
ontinuum states play

a rather small part. As one moves away from the valley of stability very weakly

bound and extended states be
ome o

upied and need to be well represented nu-

meri
ally for a faithful 
al
ulation. When 
al
ulating 
orrelations in perturbation

theory one s
atters parti
les into highly ex
ited states of positive energy so the

representation of these states is parti
ularly important for perturbation 
al
ula-

tions. These positive energy states are similar to plane waves and one would

not naturally try and expand a plane wave in an os
illator basis were it not for

the bound states being well represented in the expansion. It is only ne
essary

for the wavefun
tions to be well represented over the region of the nu
leus sin
e
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Figure 4.3: Hartree-Fo
k energy as a fun
tion of os
illator parameter and size of Hilbert

spa
e for

40

Ca. The 
rosses indi
ate the global minima, while the pluses indi
ate lo
al

minima in the larger spa
es, whose sizes are indi
ated by the numbers to the right of the

lines.

the matrix elements of the potential outside disappear very rapidly thanks to the

density-dependen
e. In �gure 4.5 some positive energy s-states are shown in the

largest nu
leus 
onsidered,

208

Pb, along with �tted plane wave states and the den-

sity pro�le on the same s
ale. As one 
an see all these states are well represented

over the region of the nu
leus.

4.4 Parameterization

As dis
ussed in the previous 
hapter, the parameters are 
hosen to minimized

a �

2

fun
tion. This pro
edure was partially automated through the use of

MINUIT[72℄, a minimization pa
kage whi
h is part of the CERN libraries. The

results obtained in this way were used as a guide to regions of parameter spa
e

where reasonable �ts may be found, whi
h are then obtained by hand.

Sin
e it is assumed that the bulk of the binding energy 
omes from the HF

mean �eld, and to ensure 
al
ulation in a reasonable time, the parameters are

�tted �rst in the HF approximation. The 
al
ulation of the 
orrelation e�e
ts then
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Size of spa
e, N E

HF

[MeV℄ jE

HF

N

- E

HF

N-2

j=E

HF

N

E

(2)

[MeV℄ jE

(2)

N

- E

(2)

N-2

j=E

(2)

N

2 -327.833 { -0.80203 {

4 -334.318 0.019430 -0.98778 0.188047

6 -335.990 0.004976 -1.02875 0.039825

8 -336.230 0.000713 -1.03501 0.006917

10 -336.286 0.000166 -1.03683 0.001755

12 -336.300 0.000041 -1.03691 0.000077

14 -336.304 0.000011 -1.03704 0.000125

16 -336.305 0.000002 -1.03702 0.000019

18 -336.305 0.000000 -1.03701 0.000008

20 -336.305 0.000000 -1.03701 0.000000

Table 4.1: Convergen
e of Hartree-Fo
k energy and se
ond order energy 
orre
tion as a

fun
tion of size of basis expansion

in prin
iple would require the re-�tting of the for
e, but sin
e the perturbation


orre
tions to the energy are found to be smaller than deviations from experiment,

re-�tting was not important.

Details of 
hanges in observables as a fun
tion of the parameters are presented

in the next 
hapter, whi
h serves as a guide to �tting nu
lear properties as well as

being an exposition of the 
hara
ter of the for
e.

4.5 Centre-Of-Mass Corre
tion

The nu
leus in a Hartree-Fo
k 
al
ulation is 
entred on the mean-�eld. In reality,

the nu
leus is not lo
alised and this anomaly in the HF 
al
ulation 
an lead to a

signi�
ant error, espe
ially in light nu
lei. Several di�erent te
hniques are used

in the literature to 
ompensate for this error(see Appendix E of Ref. [73℄). In

this work no su
h 
orre
tion is undertaken sin
e the philosophy of the present

te
hnique would suggest that this e�e
t should be treated in the framework of

perturbation theory. In this �rst 
al
ulation of the present intera
tion, only the

straightforward evaluation of the lowest order va
uum amplitude diagrams is un-

dertaken.
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Figure 4.4: Se
ond order energy 
orre
tion as a fun
tion of number of prin
ipal quantum

numbers, N, in basis expansion, for

40

Ca.
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Figure 4.5: Positive energy single parti
le s-states in

208

Pb up to the 20

th

s-state (N = 19)

for a 
al
ulation with 20 radial states per angular momentum state.



Chapter 5

Nu
lear For
e: Results

This 
hapter shows results of HF and perturbation theory 
al
ulations for a typi
al

set of parameters for some quantities of interest. Is does not show a 
omprehen-

sive set of observables for all the nu
lei under 
onsideration with a 
omparison to

data { that is the domain of 
hapter 7. Here the numeri
al properties of the for
e

are examined in the region of parameter spa
e, as explored during the pro
ess of

�tting to �nite nu
lei, whi
h produ
es a reasonable �t to give an overview of the


hara
ter of the for
e in a quantitative way and as an aid to using the for
e and


hoosing and varying parameters.

5.1 Monopole Intera
tion

5.1.1 Contributions to the HF Energy

The Hartree{Fo
k Energy is (see Appendix E):

E
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oul

+
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: (5.1)

The terms in (5.1) are labelled for dis
ussion, term by term in the order of ap-

pearan
e, as the kineti
 energy, Coulomb (whi
h 
onsists of a dire
t and ex
hange

term), dire
t (attra
tive and repulsive), ex
hange (att. and rep.), iso-dire
t (att.

and rep.), iso-ex
hange (whi
h splits into iso-ex
hange-a and iso-ex
hange-b, both

with attra
tive and repulsive parts), derivative dire
t, derivative ex
hange and

spin-orbit.

Figure 5.1 shows the 
ontribution to the Hartree-Fo
k energy per parti
le, �,

from the various terms of the attra
tivemonopole for
e and Figure 5.2 shows the

33
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Figure 5.1: Contributions to the HF energy, �, from the \attra
tive" parts of the

monopole potential

analogous 
ontributions from the repulsive terms. Note the s
ales are su
h that

the zero does not appear on every frame. The numbers for these two �gures are


ombined in Figure 5.3 to show the total 
ontribution, attra
tive plus repulsive,

from the various 
omponents of the monopole for
e. In this, as in all �gures whi
h

show a quantity as a fun
tion of A, the data points are for the nu
lei mentioned

in Chapter 3. In parti
ular, there are two nu
lei with A = 48 in ea
h plot, so a

sudden jump at A = 48, in those plots in whi
h it o

urs, is just a re
e
tion of this.

There are several points to note. Firstly, the attra
tive parts of the for
e are

always larger in magnitude than the repulsive parts, and follow the same A-

dependen
e. The �rst part of this statement 
learly must be true if the for
e

is to be binding. The fa
t that the A-dependen
e is the same, i.e. the peaks and


hanges of dire
tion appear in the 
urve in just the same pla
es for both the at-

tra
tive and repulsive terms, means that the sum of the two also has the same

A-dependen
e.

The isospin-dependent dire
t intera
tion has a vanishing 
ontribution to the

N = Z nu
lei as it must sin
e it depends on the isove
tor density Æ� = �

p

-�

n

. The
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Figure 5.2: Contributions to the HF energy, �, from the \repulsive" parts of the

monopole potential


ontributions to the total energy from this term are mu
h smaller than from the

isospin-independent term partly due to the small isove
tor density, and also due

to the fa
t the b parameters are usually �tted to be < 1. The ex
hange parts of the

isospin-dependent for
e, on the other hand, do 
ontribute to all nu
lei and are

on the same s
ale as the isospin-independent ex
hange sin
e they depend on the

same densitymatri
es. The ex
hange terms are also notable for their smoothness {

both the isospin -dependent and -independent terms have smooth A-dependen
e

whi
h approa
hes zero as A in
reases. In the next 
hapter it is shown that the

ex
hange energy is zero in nu
lear matter.

The 
ontributions from the other terms in the potential are shown in Figure

5.4. The most signi�
ant 
ontribution here is from the Coulomb term, about

whi
h there is little to say sin
e it is a well known for
e with parameters not

open for �tting. One 
an see the trend of in
reasing 
ontribution to the energy

per parti
le as A in
reases, with downward lines in the isotopi
 
hains of 
al
ium,

ni
kel, zir
onium and tin, as one would expe
t. In the ex
hange term one also

sees the isotopi
 
hains 
learly forming straight lines. The derivative term has
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Figure 5.3: Sum of 
ontributions to the HF energy, �, from the attra
tive and repulsive

parts of the monopole intera
tion.

only the dire
t term 
al
ulated sin
e the ex
hange term is rather too 
ompli
ated.

The sign of the parameter ne
essary to give 
orre
t single parti
le properties leads

to a positive 
ontribution to the Hartree-Fo
k energy, whi
h is quite small, but

not insigni�
ant. The spin-orbit for
e is nearly zero for those nu
lei in whi
h the

spin-orbit-split pairs are all fully o

upied. The deviation from zero is due to the

fa
t that the wavefun
tions in the states of di�erent j are not quite the same.

For those nu
lei whi
h are not spin-orbit saturated there is a general trend of

de
reasing 
ontribution with higher A, indi
ative of the fa
t that the for
e only


ontributes to the binding from a few states near the Fermi surfa
e. The magni-

tude of the 
ontribution is rather small and is �xed not by the binding energy, but

to the spin-orbit splitting of the single parti
le energies.

5.1.2 Variation of monopole for
e parameters

Starting from a set of parameters used in the previous se
tion, whi
h is the result

of a typi
al �t to the data, one may 
onsider the a
t of singly varying any of the



CHAPTER 5. NUCLEAR FORCE: RESULTS 37

0 50 100 150 200
A

0.2

0.25

0.3

0.35

0.4

η 
[M

eV
]

Derivative direct

0 50 100 150 200
A

1

2

3

4

5

η 
[M

eV
]

Coulomb direct

0 50 100 150 200
A

−1.5

−1

−0.5

0

Spin−Orbit

0 50 100 150 200
A

−0.24

−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

Coulomb exchange

Figure 5.4: Contributions to the HF energy, �, from the Coulomb, gradient and spin-

orbit terms.

parameters to examine the e�e
t of ea
h of them separately. Having observed

that the attra
tive and repulsive for
es give 
an
eling 
ontributions whi
h have

the same A-dependen
e, it suÆ
es to look at varying the attra
tive parameters

alone, sin
e varying the repulsive parameters will just give the same results with

opposite sign.

�

a

and �

r

The � parameters enter the HF energy through the f fun
tions (see Equation (3.2))

whi
h appear in all the terms of themonopole for
e, ex
ept for the derivative term.

In the HF potential, as well as through the f parameters, there are terms whose

x-dependen
e is spe
i�
ally �-dependent.

Taking a small in
rease in �

a

, from 2:0 to 2:01 one sees a slight in
rease in

the parameter f

�

a

so from the a
tion of this quantity alone one would expe
t an

in
rease in the HF energy due to the strengthening of the attra
tive for
e and a

deepening of the HF potential. On the other hand, the terms in the potential
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Figure 5.5: A
tion of the variation of �

a

upon various 
ontributions to the HF potential,

U(x), in light and heavy nu
lei (

40

Ca and

208

Pb). The di�erent 
ontributions to the HF

potential shown in the four frames are explained in the text.

whose x-dependen
e depends on �

a

has an extra fa
tor of f

�

and is repulsive so

ought to 
ountera
t the e�e
t of the general strengthening of the attra
tive term.

The e�e
t of varying �

a

upon the expli
itly �-dependent terns in the HF potential

is shown in Figure 5.5. The �rst frame shows the terms in the isospin-independent

part of the HF potential expli
itly dependent on �

a

for

40

Ca and

208

Pb. The large


ontribution is from the dire
t rearrangement term. The very small 
ontribution

near the x-axis is that from the ex
hange rearrangement term (that term whi
h

features the fun
tion G(x) in Equation (3.9)). The se
ond frame shows terms anal-

ogous to those in frame one, but for the repulsive for
e. Here one sees that a

fairly signi�
ant 
hange arises despite the la
k of any dependen
e in �

a

. The dif-

feren
es then must be due to the 
hange in density whi
h arises. The third frame

shows the sum of the �rst two and the full HF potential (for neutrons) is shown

in the �nal frame. Although the expli
itly �-dependent terms show a redu
tion

in binding, the overall 
hange in the density and the e�e
ts of the 
hange in the
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Figure 5.6: A-dependen
e of the binding energy per nu
leon, -�, for various values of

�

a

, and the 
hange in � per unit 
hange in �

a

as a fun
tion of A.

other parameters gives a net result of a deepened HF potential with a 
orrespond-

ing in
rease in binding energy and de
rease in radius. The numeri
al 
hanges are

shown in Table 5.1 in whi
h it is interesting to note that 
hanging �

a


hanged f

�

a

rather less than other of the parameters in the potential.

Figure 5.6 shows how the A-dependen
e of the binding energy per parti
le, �,


hanges as a result of varying �

a

. As has been noted, an in
rease in �

a

in
reases

Quantity E

HF

(MeV) r


h

(fm) f

�

a

N

�

a

f

�

r

N

�

r

Valuej

�

a

=2:00

-345.2 3.48 0.238 4.198 0.420 2.332

Valuej

�

a

=2:01

-413.1 3.43 0.233 4.385 0.398 2.465

Per
entage 
hange 19.7 1.4 2.1 4.5 5.2 5.7

Table 5.1: E�e
t of a small 
hange in �

a

upon observables and parameters of the mean

�eld for

40

Ca.
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the binding energy and this is seen, in the left frame, to o

ur a
ross the whole

range of nu
lei. The right frame shows the 
hange of binding energy per nu
leon

per unit 
hange in �

a

as a fun
tion of A. Here one notes that heavier nu
lei are

a�e
ted more strongly than light nu
lei with about a 20% di�eren
e in strength.

The dependen
e is quite smooth, with a small amount of shell stru
ture in evi-

den
e. The s
ale of the y-axis shows that very large 
hanges in the binding energy

(and, in fa
t, in all other observables) result from small 
hanges in �

a

whi
h is not

surprising sin
e �

a

features as an exponent in the expression for the for
e (3.1).

�

a

and �

r

Like the � parameters, the � parameters enter into ea
h of the terms of the

monopole for
e via their own fun
tions, in this 
ase the N fun
tions (see Equation

(3.9)). The form of these fun
tions looks like a re
ipro
al of the f fun
tions and

one �nds that an in
rease in a � results in a de
rease in the 
orresponding N

�

.

The \leading" term of the HF potential, i.e. the Hartree term whi
h is not part

of the rearrangement potential has an x-dependen
e whi
h is itself dependent on

the �

a

parameter. This term, for a small 
hange in �

a

is shown in the �rst frame of

Figure 5.7, added to the fun
tionally identi
al term from the rearrangement po-

tential and the tiny part of the potential whi
h arises from the ex
hange term but

has the form of a lo
al one-body potential (that part whi
h features the fun
tion

G(x)). The se
ond frame again shows the 
orresponding a
tion upon the same

terms for the repulsive part of the for
e and the two parts are added together for

frame 3. Frame 4 shows the e�e
t of a small in
rease in �

a

for the HF potential.

As with the variation of �

a

one 
on
ludes that the dominant e�e
t of 
hanging the

parameter is not dire
tly through the parts of the for
e whi
h expli
itly depend on

it, but rather through the 
hange in the density. In
reasing �

a

has the nett e�e
t

of de
reasing the depth of the HF potential and in
reasing the rms radius of the

density distribution.

The 
hange in the A-dependen
e resulting from varying �

a

is shown in Figure

5.8. The left frame gives a visual guide to the e�e
t on the binding energy over

the periodi
 table as �

a

is varied. The obvious e�e
t is seen to be a shifting of

the energies en masse. The variation of this e�e
t with A is shown in the se
ond

frame. The 
urve's shape resembles that of its analogue in the variation of �

a

ex
ept for a 
hange in sign. This suggests that the � and � parameters are not

independent. In the next 
hapter the nu
lear matter problem is studied in whi
h

it 
an be seen that in the limit of in�nite nu
lear matter the two parameters are

indeed 
orrelated.

Potential Strengths, W

a

and W

r

The meaning of and the e�e
t of 
hanging the potential strengths are quite 
lear

{ they 
ontrol the overall strength of the intera
tion and the extent to whi
h they
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Figure 5.7: A
tion of the variation of �

a

upon the HF potential in light and heavy nu
lei

(

40

Ca and

208

Pb). The di�erent 
ontributions to the HF potential shown in the four frames

are explained in the text.


an
el ea
h other out.

Just varying W

a

varies the depth of the potential and the HF energy in an

obvious way. A more interesting way to examine the potential strengths is to

vary them both while keeping an observable 
onstant. Table 5.2 shows the e�e
t

W

a

W

r

r


h

(fm) E

(2)

-1320.0 1431.3 3.32 -1.19

-1420.0 1605.8 3.40 -1.09

-1520.0 1785.0 3.48 -1.01

-1620.0 1986.9 3.56 -0.95

-1720.0 2157.3 3.64 -0.90

Table 5.2: Charge radius and se
ond order energy 
orre
tion in

40

Ca as attra
tive and

repulsive potential strengths are varied at 
onstant Hartree-Fo
k energy
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Figure 5.8: A-dependen
e of the binding energy per nu
leon, -�, for various values of

�

a

, and the 
hange in � per unit 
hange in �

a

as a fun
tion of A.

of varying W

a

and W

r

su
h that the binding energy of

40

Ca is kept �xed (at 345:2

MeV). One sees that there is a linear dependen
e upon the potential strengths

of the 
harge radius so that one may �t both the energy and the 
harge radius

simultaneously for at least one nu
leus with �xed values of the exponents � and

�.

The � 30% 
hange in the se
ond order energy 
orre
tion shows that the amount

of total energy whi
h 
omes from the 
orrelation depends on how one 
hooses the

parameters. Clearly in this 
ase one must 
hoose the set of parameters whi
h �ts

the 
harge radius, but the 
hanges in the se
ond order 
orre
tion show that one

may in
lude as a �tting 
riterion the 
orrelation energy.

Figure 5.9 shows how the binding energies of the other nu
lei 
hange between

the most extreme values of the potential strengths in Table 5.2. The top two lines

show the two 
urves of E=A as labelled by the left y-axis. Clearly there is only a

slight di�eren
e between the two 
urves. The lower 
urve shows this di�eren
e

and is labelled by the right y-axis. It 
an be seen that this 
urve of the di�eren
es
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Figure 5.9: E�e
t of varying W

a

and W

r

on the binding energy of a range of nu
lei,

keeping that of

40

Ca 
onstant.

mirrors the upper 
urves. This indi
ates that in
reasing the magnitudes of the

potential strengths serves to 
atten out the shell stru
ture somewhat.

Isospin parameters, a

a

, b

a

, a

r

, b

r

From Figures 5.1-5.3 the dire
t isospin-dependent energy is seen to depend

strongly on the di�eren
e N - Z with the largest 
ontribution 
oming from the

nu
lei

78

Ni,

132

Sn and

208

Pb, those being the nu
lei with the greatest neutron ex-


esses. In Figure 5.10 one sees the result upon the total binding energy per nu-


leon of varying the b parameter for the attra
tive for
e. It is seen that there is a

large variation the the 
ontribution to the HF energy from the b-dependent terms.

For a positive value of the b

a

, that is to say an attra
tive for
e in the dire
t part,

a large attra
tive 
ontribution is seen for the nu
lei mentioned above with large

neutron ex
ess. Also of note is the ex
hange 
ontribution whi
h a
ts with opposite

sign to the dire
t term and results in redu
ed binding for the light N = Z nu
lei

where its a�e
t is strongest (see Figure 5.3).

As well as a�e
ting the binding energy, the b parameters 
ontrol the relative

depths of the proton and neutron potentials and so also give one the freedom to

�t the relative single parti
le energies of protons and neutrons. For the values of

b

a

used in Figure 5.10 and some values in between, the single parti
le energies
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Figure 5.10: E�e
t upon the binding energy per parti
le of the variation of the b

a

isospin-

dependent parameter

of the few neutron and proton states either side of the Fermi level in

208

Pb are

shown in Table 5.3. One sees making the parameter b

a

more positive de
reases

the binding of the proton states and in
reases the binding of the neutron states.

The a
tion of b

r

is reversed as shown in Figures 5.1 and 5.2.

The a parameters feature only in the ex
hange part of the energy and potential.

Their e�e
t then, as shown in Figures 5.1-5.3 is largest in light nu
lei and smoothly

varying. Varying a

a

, as shown in Figure 5.11 re
e
ts this behaviour and gives

one the freedom to vary the A-dependen
e of the �t to the binding energy. An

interesting e�e
t of having a parameter whi
h 
ontrols a part of the for
e whi
h


ontributes quite weakly, only via ex
hange parts in the HF approximation, is

that the 
ontribution to the perturbation 
al
ulation to the energy may be large

sin
e there is no 
al
ulational distin
tion between dire
t and ex
hange for
es at

the level of perturbation theory. Figure 5.12 shows the size of the se
ond-order

energy 
orre
tion as a fun
tion of a

a

. The 
orre
tions are shown as 
ontributions

to the binding energy, so are positive sin
e the se
ond order 
orre
tion is always

binding. The quadrati
 behaviour of the energy with respe
t to a

a


an be seen as


ontrasted to the more linear behaviour in the HF approximation. By in
reasing

the magnitude of the a parameters one 
an then obtain large values of 
orrelation

energy for moderate 
hanges in HF energy.

The �gure also shows the di�eren
e in 
ontributions to the N = Z and N 6= Z
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�1f

5=2

-9.6 -10.5 -11.6 -12.9 -14.4 -16.3 -18.8

�2p

�

1=2

-8.9 -9.8 -10.9 -12.2 -13.8 -15.7 -18.2

�1g

9=2

-5.5 -6.5 -7.6 -8.9 -10.4 -12.2 -14.6

�0i

11=2

-3.9 -4.9 -6.1 -7.4 -8.9 -10.7 -12.9

�2d

5=2

-3.1 -4.0 -5.1 -6.2 -7.8 -9.6 -11.9

Table 5.3: Proton (�) and neutron (�) single parti
le energies near the Fermi level in

208

Pb. The asterisks denote the highest o

upied states.

nu
lei from the a-dependent terms. This is understandable in the following terms:

An ex
itation arising from this term is non-zero if a single proton is ex
ited to a

0 50 100 150 200

A

6

8

10

12

η 
[M

eV
]

a
a
=+0.6

a
a
=−0.6

Figure 5.11: Dependen
e of the binding energy per nu
leon on the parameter a

a

. Values

of a

a

range from -0:6 to 0:6 as labelled and in
rement in steps of 0:2.
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E
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]
a

a
=−0.6

a
a
=−0.4

a
a
=−0.2

a
a
=0.0

a
a
=0.2

a
a
=0.4

a
a
=0.6

Figure 5.12: Dependen
e of the total se
ond order 
ontribution to the binding energy

on the parameter a

a

. The parameter a

r

is kept at zero.

neutron orbital and a single neutron is ex
ited to a proton orbital simultaneously.

Sin
e ea
h ex
itation is an l = 0 ex
itation the lowest state a given proton 
an

ex
ite to is the lowest uno

upied neutron state of the same l and vi
e versa for a

neutron ex
iting to a proton state. In an N = Z nu
leus the proton and neutron

states are o

upied to the same level so ea
h ex
itation must involve a 
hange in

prin
ipal quantum number and thus in
ur quite a large energy denominator. In an

N 6= Z nu
leus one 
an have the situation in whi
h a neutron ex
ites to a proton

states in whi
h all the (non-isospin) quantum numbers are exa
tly the same in

whi
h the matrix element is large and the energy denominator is small, giving rise

to a large 
ontribution.

Derivative for
e parameter, k

This part of the for
e 
ontrols rather strongly the density pro�le, parti
ularly at

the surfa
e. Without it, there is always a large peak in the densities around the

surfa
e of the nu
leus, whi
h is parti
ularly evident in heavy nu
lei. Figure 5.13

shows the surfa
e of the 
harge density in

208

Pb as the k parameter is varied. As

one 
an see the peak is rather 
onsiderable if one omits this term (k = 0:0). In the

�gure, the parameter is in
reased in steps of 2:0 as indi
ated. At some value near

6:0 the 
harge density �ts that of experiment quite well, and then be
omes worse
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3.0 3.5 4.0 4.5 5.0 5.5 6.0

r [fm]

0.055

0.060

0.065

0.070
ρ ch

[fm
−3

]

Experimental k=0.0

k=24.0

k=4.0

Figure 5.13: E�e
t of varying k on the surfa
e of the 
harge density

as the parameter is in
reased. The experimental data are the Fourier transform

of the 
harge s
attering form fa
tor[99℄.

k [Mev fm

10

℄ N

d

E

derv

[MeV℄

0.0 -5.59 0.00

4.0 -4.72 44.63

8.0 -4.24 71.79

12.0 -3.90 91.36

16.0 -3.65 106.6

20.0 -3.45 119.2

24.0 -3.29 129.7

Table 5.4: Hartree Energy 
ontribution from derivative term as a fun
tion of term's

strength in

208

Pb

Table 5.4 shows how, as one in
reases the strength of the derivative term, the


hange in the density pro�le results in a de
rease in the N

d

parameter, whi
h is

de�ned in expression (E.24) of Appendix E, so that, despite the term being pro-

portional to the parameter k, the in
rease in energy is less than linear. The other

signi�
ant e�e
t of the derivative terms is related to 
hange in the surfa
e prop-

erties as shown in Figure 5.13. Sin
e the shape of the HF potential is dire
tly

dependent upon the shape of the density, the rounding of the surfa
e of the den-
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Figure 5.14: E�e
t of varying k upon the neutron single parti
les energies near the fermi

surfa
e in lead.

sity also smooths out the wall of the potential. The result of this is that those

high angular momentum states whi
h spend most of their time near this surfa
e

su�er a loss in binding. This is shown in Figure 5.14 for neutron states near the

fermi surfa
e in

208

Pb. When k = 0 the N = 126 shell gap is not pronoun
ed, but

as k in
reases the i

11=2

state moves up as the rest move down and the resulting

shell gap is in
reased. Table 5.5 shows the numeri
al size of the gap between the

highest o

upied and lowest uno

upied neutron states in

208

Pb as shown in Figure

5.14.

k [Mev fm

10

Gap [Mev℄

0.0 2.10

4.0 3.44

8.0 3.43

12.0 3.39

16.0 3.39

20.0 3.40

24.0 3.49

Table 5.5: N = 126 shell gap in

208

Pb as a fun
tion of k. Experimental value is 4.23

MeV[21℄
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Figure 5.15: Proton single-parti
le level spe
trum of

48

Ca as spin-orbit paramter, 
 is

varied.

The reason that the single parti
le energies be
ome more bound as k in
reases,

even though the 
ontribution to the Hartree-Fo
k energy of this term is positive is

that the parameter N

d

as shown in Table 5.4 is negative and appears with a single

power in the mean-�eld, but squared in the HF energy.

Spin-orbit parameter, 


Figure 5.15 shows the variation of the proton single parti
le energies up to Z = 40

as a fun
tion of the spin-orbit strength, 
. One sees that as the parameter is


 [Mev fm

5

℄ r


h

[fm℄ E

so

0.0 3.50 0.00

50.0 3.49 -8.14

100.0 3.47 -17.34

150.0 3.44 -27.91

200.0 3.44 -40.43

250.0 3.43 -56.18

Table 5.6: Charge radius and 
ontribution to HF energy from spin-orbit for
e as 
 is

varied in

48

Ca.
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in
reased the magi
 number 28 appears and upon further in
reasing the magi


number 20 disappears. The 
orre
t value of the parameter is presumably around

150 Mev fm

5

where both magi
 numbers exist. The fa
t that the 0f

5=2

and 0f

7=2

states do not 
oin
ide in energy at 
 = 0 is due to the ex
hange part of the isospin-

dependent for
e. The last term in the nonlo
al HF potential (3.10) is, for protons

U

p

(x; x

0

)'

b

(x) = -

X

�

W

�

a

�

f

�

�

�

n

(x; x

0

)�

�

�

(x)�

�

�

(x

0

)'

b

(x

0

) (5.2)

whi
h gives a di�erent 
ontribution a

ording to whether the state whi
h 
orre-

sponds to the proton state '

b

is present in the neutron density �

n

(x; x

0

) or not.

Sin
e the 0f

7=2

neutron state is o

upied but the 0f

5=2

state is not, these two uno
-


upied proton states see a spin-orbit splitting even without the spin-orbit for
e.

5.2 Higher Multipole for
es

The higher multipole for
es do not 
ontribute to the dire
t HF energy in spheri
al

doubly-
losed-shell nu
lei (See Appendix E). There is an ex
hange 
ontribution to

the energy of the form:

E

�;q

1

;q

2

= -

f

�

2

W

�;q

1

;q

2

X

i;j<�

F

�

X

M=-�

(-1)

M

hijj(r

�

1

(r

1

)�(r

1

)Y

�M

(r̂

1

)) (r

�

2

�(r

2

)Y

�-M

(r̂

2

))jjii

(5.3)

Sin
e the ex
hange part of the intera
tion is presumably small by analogy with the

monopole �eld, its 
ontribution to the HF �eld is negle
ted. The 
ontribution to

the HF energy is 
al
ulated, as well as the 
ontribution to perturbation theory.

It is diÆ
ult to show the behaviour of the multipole for
es for a typi
al set of

parameters sin
e the observables of the ground states of spheri
al nu
lei do pro-

vide enough information to give de�nite values to these parameters. Although


al
ulations of ex
ited states or deformed nu
lei will be ne
essary to �t these pa-

rameters, there will be a 
ontribution to spheri
al nu
lei via the ex
hange term

in the Hartree-Fo
k approximation and in perturbation theory, so these possible


ontributions are examined here.

TheA-dependen
es of the higher multipole for
es are 
ontrolled by parameters

f

�

so it is not worthwhile to examine su
h dependen
e sin
e it 
an be set freely.

Instead, the results of varying the three strength parameters for the quadrupole

for
e are examined in the N = Z nu
leus

40

Ca and the N 6= Z nu
leus

48

Ca whi
h

are 
lose enough in mass that the un
ertainty in the A-dependen
e is irrelevant.

The fun
tion f

Q

is 
hosen to be

f

Q

=

1

A

7=3

(5.4)

sin
e this is the value used in Ref. [74℄. This value is 
ertainly not to be taken

as �xed, but only as a 
hoi
e made sin
e some de�niteness is ne
essary for this
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study. The a
tual A-dependen
e of the for
e may need to be quite di�erent sin
e

this density-dependent for
e used in the full spa
e may be quite di�erent from

the traditional density-independent quadrupole for
es used in a restri
ted spa
e.

Negative signs are 
hosen for the strengths sin
e the quadrupole for
e is usually


onsidered to be attra
tive. In the 
ase of the spheri
al nu
lei in whi
h the largest


ontribution is from the HF ex
hange term, the e�e
t is a
tually to lower the

binding energy.

The results for the 
ontribution to the HF ex
hange energy as a fun
tion of the

strength parameters are shown in Table 5.7. In the 
ase of

40

Ca the results for

the pp and the nn for
e are almost the same, whi
h is to be expe
ted sin
e their

wavefun
tions and relative single-parti
le spa
ing are almost identi
al. The HF

energy 
ontribution to the pn for
e is very 
lose to that of the pp and nn for
es, but

the perturbation 
al
ulation is noti
eably di�erent. This is due to the fa
t that the

proton and neutron states are shifted with respe
t to ea
h other as a result of the

Coulomb intera
tion so that the energy ex
itations from proton to neutron states

and vi
e versa in
ur di�erent energy denominators to those ex
itations whi
h are

between single parti
le states of the same isospin. In the 
ase of

48

Ca the e�e
t

of the A-dependen
e is seen to redu
e the strength of the pp intera
tion for a

given W paramter. The addition of eight neutrons to the f7

2

state results in quite

a substantial in
rease in the 
ontribution from the nn for
e, whi
h shows that the

quadrupole for
e has a large shell-dependen
e. Again, the pn for
e has a rather

larger e�e
t in perturbation theory than either the pp or nn for
es.

The linear behaviour of the HF ex
hange energy is evident. This exa
t linearity

is as a result of the approximation used, whi
h negle
ts the e�e
t upon the mean

�eld due to the multipole for
es. The extra 
ontribution to the se
ond order 
or-

re
tion is seen to be quadrati
 in the strength parameter. This is a natural result

of perturbation theory whi
h orders terms by the number of intera
tions taking

pla
e. In se
ond order, there is a squared matrix element proportional toW

2

Q

. The

quadrati
 behaviour is not exa
t sin
e the quadrupole term 
an
els and augments

the monopole term (and the dipole term, when used) as shown in Appendix F.



CHAPTER 5. NUCLEAR FORCE: RESULTS 52

40

Ca

W

Q;pp

[MeV℄ 0.0 -100 -500 -1000 -5000 -10000 -50000

E

(Q)

[MeV℄ 0.0 0.051 0.254 0.508 2.359 5.078 25.393

E

(2)

[MeV℄ -1.268 -1.268 -1.268 -1.269 -1.288 -1.348 -3.261

E

(Q)

(2)

- E

(0)

(2)

[MeV℄ 0.0 0.0 0.0 0.001 0.020 0.080 1.993

W

Q;nn

[MeV℄ 0.0 -100 -500 -1000 -5000 -10000 -50000

E

(Q)

[MeV℄ 0.0 0.052 0.258 0.517 2.584 5.169 25.843

E

(2)

[MeV℄ -1.268 -1.268 -1.268 -1.269 -1.287 -1.347 -3.237

E

(Q)

(2)

- E

(0)

(2)

[MeV℄ 0.0 0.0 0.0 0.001 0.019 0.079 1.969

W

Q;pn

[MeV℄ 0.0 -100 -500 -1000 -5000 -10000 -50000

E

(Q)

[MeV℄ 0.0 0.052 0.257 0.515 2.573 5.147 25.733

E

(2)

[MeV℄ -1.268 -1.268 -1.269 -1.271 -1.347 -1.584 9.132

E

(Q)

(2)

- E

(0)

(2)

[MeV℄ 0.0 0.0 0.001 0.003 0.0079 0.0316 7.864

48

Ca

W

Q;pp

[MeV℄ 0.0 -100 -500 -1000 -5000 -10000 -50000

E

(Q)

[MeV℄ 0.0 0.047 0.238 0.476 2.380 4.759 23.795

E

(2)

[MeV℄ -3.149 -3.149 -3.149 -3.149 -3.165 -3.214 -4.778

E

(Q)

(2)

- E

(0)

(2)

[MeV℄ 0.0 0.0 0.0 0.0 0.016 0.065 1.629

W

Q;nn

[MeV℄ 0.0 -100 -500 -1000 -5000 -10000 -50000

E

(Q)

[MeV℄ 0.0 0.083 0.415 0.830 4.149 8.297 41.485

E

(2)

[MeV℄ -3.149 -3.149 -3.149 -3.150 -3.175 -3.254 -5.795

E

(Q)

(2)

- E

(0)

(2)

[MeV℄ 0.0 0.0 0.0 0.001 0.026 0.106 2.646

W

Q;pn

[MeV℄ 0.0 -100 -500 -1000 -5000 -10000 -50000

E

(Q)

[MeV℄ 0.0 0.054 0.271 0.542 2.711 5.421 27.107

E

(2)

[MeV℄ -3.149 -3.149 -3.151 -3.155 -3.251 -3.535 -12.346

E

(Q)

(2)

- E

(0)

(2)

[MeV℄ 0.0 0.0 0.002 0.006 0.102 0.386 9.197

Table 5.7: Contribution from the quadrupole for
e to the HF ex
hange energy (E

(Q)

). E

(2)

is the total se
ond order 
orre
tion and E

(Q)

(2)

-E

(0)

(2)

is the 
hange in se
ond order 
orre
tion

due to the quadrupole for
e.



Chapter 6

Nu
lear Matter and Neutron Star

Cal
ulations

The purpose of nu
lear stru
ture theory is to des
ribe the properties of observed

nu
lei given some kind of nu
lear intera
tion or potential as input. The diÆ
ulties

of performing full 
al
ulations and the desire to examine the properties of many


andidate intera
tions have led to in�nite nu
lear matter 
al
ulations be
oming a

standard te
hnique in examining the properties of nu
lear potentials.

In its simplest form, in�nite nu
lear matter 
onsists of an equal (and in�nite)

number of protons and neutrons intera
ting via a nu
lear potential but with the

Coulomb intera
tion \swit
hed o�". One may then 
al
ulate its binding energy per

nu
leon as a fun
tion of the nu
lear density. Theminimum point of this 
urve gives

the equilibrium density and energy. The existen
e of the minimum at the 
orre
t

energy and density is a ne
essary result whi
h is a re
e
tion of the saturation of

nu
lear for
es.

The observables in nu
lear matter are identi�ed in a number of ways. The den-

sity is inferred from the 
entral densities of heavy nu
lei and is reasonably 
ertain

sin
e there is not mu
h variation in this value between nu
lei (saturation of the

density). For energies one 
onsiders terms in the simple semi-empiri
al mass for-

mula of Weizs�a
ker-Bethe [76℄ whi
h have the 
orre
t A-dependen
e to be �nite

in nu
lear matter, namely the volume and asymmetry terms. Other observables

are 
onsidered below.

More detailed des
riptions of nu
lear matter are widely available in textbooks

on nu
lear physi
s and many-body physi
s (see e.g. [34, 36, 37℄) and in review

arti
les (see e.g. [75℄).

53



CHAPTER 6. NUCLEAR MATTER AND NEUTRON STAR CALCULATIONS 54

6.1 Symmetri
 Nu
lear Matter

6.1.1 Single parti
le wavefun
tions

Sin
e in�nite nu
lear matter is in�nite and homogeneous, the single parti
le wave

fun
tions must be translationally invariant, hen
e they are plane waves states.

Nu
lei also have intrinsi
 spin and isospin so ea
h single parti
le state also has a

spinor and isospinor asso
iated with it:

�

�

(r) =

1

p

V

e

ik

�

�r

�

�

�

�

(6.1)

where �

�

is a spinor and �

�

is an isospinor.

6.1.2 Density

In nu
lear matter theory, the system is a Fermi liquid, 
onsisting of independent

parti
les o

upying states up to the Fermi level. In this pi
ture we may write the

number of parti
les as

A =

X

k��

�(k

F

- k) (6.2)

where �(x) is the step fun
tion:

�(x) =

�

1 x > 0

0 x < 0

: (6.3)

As the size of the system in
reases to in�nity the sum over momentum states

be
omes an integral and the expression for the number of parti
les be
omes

A =

V

(2�)

3

X

��

Z

d

3

k �(k

F

- k)

+

4V

(2�)

3

4�

Z

k

F

0

k

2

Z

dk

=

2V

3�

2

k

3

F

: (6.4)

Dividing by the volume, the density � = A=V is

� =

2k

3

F

3�

2

: (6.5)
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6.1.3 Kineti
 Energy

The kineti
 energy of a many-parti
le systemmay be written as the sum of the sin-

gle parti
le kineti
 energies, T =

P

i

hij

^

Tjii whi
h, in the 
ase of the single parti
le

states de�ned in Equation (6.1), is:

T =

X

k��

1

V

Z

d

3

r e

-ik�r

�

y

�

�

y

�

 

-

�hr

2

2m

!

e

ik�r

�

�

�

�

; (6.6)

where �

�

is a spinor and �

�

is an isospinor. Sin
e the kineti
 energy operator

does not a
t in the spin or isospin spa
es, the produ
ts of the spinors and their

hermitian 
onjugates is unity. The a
tion of the Lapla
ian on the exponential is

just r

2

e

ik�r

= -k

2

e

ik�r

so that

T =

X

k��

�h

2

2m
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: (6.7)

Hen
e

T

A

=

3

5

�h

2

k

2

F

2m

(6.8)

whi
h is the kineti
 energy per parti
le. Using the relation between k

F

and � (6.5),

the kineti
 energy per parti
le may also be expressed as

T

A

=

3

5

�h

2

2m

 

3�

2

2

!

2

3

�

2

3

: (6.9)

In nu
lear units, and taking the mass to be the average of the neutron and proton

masses, m � 938:8 MeV, the kineti
 energy per parti
le is approximately

T

A

= a

k

�

2

3

� 75:0�

2

3

MeV (6.10)

6.1.4 Potential Energy

The total potential energy due to a two-body intera
tion in a many body system

may be expressed as

V =

1

2

X

��

(h��jV(1; 2)j��i- h��jV(1; 2)j��i) = E

D

- E

E

(6.11)
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where � and � ea
h represent all the quantum numbers of the individual parti
les

and the sums run over all o

upied states. E

D

is 
alled the dire
t term, and E

E

the ex
hange term. Considering �rst the dire
t term, with the 
entral part of the

two-body intera
tion a
ting between the plane wave states, the energy is
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�
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Using the fa
t that in in�nite nu
lear matter, the density is a 
onstant, the fun
-

tions �, may be taken outside of the integrals:
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so that the 
ontribution to the energy, per nu
leon, is
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: (6.14)

The ex
hange term, E

�

is
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Again taking � to be 
onstant, the integral just gives a delta fun
tion:
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and the energy per nu
leon, E

�

=A! 0 as A!1. Note that this is in a

ord with

the results presented in 
hapter 5 for the ex
hange 
ontribution to the HF energy

where the 
ontributions are seen to be
ome smaller as A is in
reased.

6.2 Asymmetri
 nu
lear matter

In asymmetri
 nu
lear matter the proton and neutron densities are not equal. The

asymmetry is 
hara
terized by the quantity I, de�ned as

I =

N- Z

A

(6.17)

6.2.1 Density

The proton and neutron densities are de�ned in terms of the I parameter as

�

p

= -

1

2

(I- 1)� =

1

2

(1- I)� (6.18)

�

n

=

1

2

(1+ I)�: (6.19)

In addition, the relation (6.5) between density and Fermi momentum may be

derived for the 
ase of a proton and a neutron Fermi momentum:

�

n

=

k

3

F(n)

3�

2

(6.20)

�

n

=

k

3

F(p)

3�

2

: (6.21)

Note that these expressions di�er from Equation (6.5) ea
h by a fa
tor of two sin
e

there is not a sum over the isospin.
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6.2.2 Kineti
 Energy

Now the kineti
 energy is the sum of proton and neutron kineti
 energies:
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and the kineti
 energy per parti
le is
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whi
h is expressed in terms of the I parameter as
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6.2.3 Potential Energy

The zero result for the ex
hange term in the 
ase of symmetri
 nu
lear matter was

due to the ex
hange of the spa
e 
oordinates. The 
hara
ter of the spa
e part in the

isospin-dependent term is exa
tly the same and the result is similarly zero. In ad-

dition, then, to the isospin-independent parts of the monopole intera
tion, there

is an additional dire
t 
ontribution from the \b"-terms of the isospin-dependent

part of the for
e. The energy due to this term is
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In the 
ase where �
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= �
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= q the energy is
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and in the 
ase �

�

6= �

�

the 
ombined a
tion of the isospin operators gives a neg-

ative sign:

E

q �q

= -

X

�=a;r

1

2

W

�

b

�

f

�

�

0

�

k<k

q

X

k�

Z

e

-k�r

�

�

�

e

ik�r

d

3

r

1

A

0

B

�

k<k

F( �q)

X

k�

Z

e

-k�r

�

�

�

e

ik�r

d

3

r

1

C

A

= -

X

�=a;r

2W

�

b

�

V

-1

�

2�

�

-�

�

0

B

�

k

F(q)

X

k

1

1

C

A

0

B

�

k

F( �q)

X

k

1

1

C

A

= -

X

�=a;r

W

�

b

�

V

-1

�

2�

�

-�

�

 

V

(2�)

3

4�

Z

k

F(q)

0

k

2

dk

! 

V

(2�)

3

4�

Z

k

F( �q)

0

k

2

dk

!

= -

X

�=a;r

VW

�

b

�

�

2�

�

-�

�

�

p

�

n

(6.27)

Then the total energy due to the isospin-dependent term is
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and the energy per parti
le is
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The energy per parti
le of asymmetri
 nu
lear matter, in terms of the total density

and the asymmetry parameter I is:
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6.3 Observables

6.3.1 Symmetri
 nu
lear matter

As a fun
tion of the density, the energy per parti
le in nu
lear matter for a physi
al

system has a minimum at the saturation density (�

0

) with a value �

0

. The observed

value of � = E=A at saturation density is determined from the liquid drop model

to �ts of a large number of �nite nu
lei and is taken to be[22℄

E

0

= -16:0 � 0:2 MeV: (6.31)

One may expand the fun
tion � = E=A about this minimum point:
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For the state of density � to be a minimum the �rst derivative must be zero. The

physi
al parameter proportional to the �rst derivative is the pressure

P = -

��

�v

= �

2

��

��

(6.33)

where v = 1=� is the volume per parti
le. The expression for the pressure in

symmetri
 nu
lei is
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The quadrati
 term in the Taylor expansion is identi�ed as the in
ompressibility,

K,

K = 9�

2

�
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�

��

2

�

�

�

�

�

�

0

: (6.35)

K is a measure of the energy needed to produ
e a density 
hange in the nu
lear

matter. Its value is not well known, but is inferred from those ex
itation in �nite
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nu
lei whi
h 
orrespond to density 
u
tuations (the breathing mode) to be 210�20

MeV[85℄. A generalized K(�) may be de�ned for non-equilibrium densities [22℄:

K = 9�
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+ 18
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(6.36)

where P is the pressure as de�ned above. Evaluated for the for
e in this thesis,

the generalised in
ompressibility is
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6.3.2 Asymmetri
 nu
lear matter

Aside from the leading term in the Bethe-Weizs�a
ker mass formula, the asymmetry

term also has an A-dependen
e su
h that it should be �nite in asymmetri
 nu
lear

matter. Its form is

�j

asym

= a

s

(N- Z)

2

A

2

(6.38)

and the parameter a

s

, like the leading term E

0

above is �tted to a large number of

observed binding energies. This 
oeÆ
ient is identi�ed in the expression (6.30) as
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: (6.39)

Typi
al values for this parameter range from 18:6 Mev [77℄, to 23:7 MeV [78℄,

to 33 MeV [79℄, the last value being the most re
ent. For the present 
ase, the

separable intera
tion gives for a

s

:
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At I = 0 this expression be
omes
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In addition one may 
onsider the equation of state for pure neutron matter

(I = 1). Although no observables as su
h are known, due to the fa
t that neutron

matter is not bound by nu
lear for
es, this very fa
t may be used as a 
ondition, i.e.

neutron matter should not be predi
ted to be bound by the model. The binding

energy of neutron matter is given from Equation 6.30 with I = 1 and � = �

n

:
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6.4 Results

Results are presented for the parameter set used to �t �nite nu
lei. This values of

the parameters are given at the beginning of the next 
hapter.

The 
urves of energy per parti
le in symmetri
 nu
lear matter (SNM) and Pure

Neutron Matter (PNM) are shown in Figure 6.1. The equilibrium point for sym-

metri
 nu
lear matter o

urs at �

0

= 0:155 fm

-3

with an energy per nu
leon of

-15:56MeV. This 
ompares favourably with the inferred experimental[22℄ values

of -16:0 � 0:2 MeV at a saturation density of �

0

= 0:16 � 0:005 fm

-3

, espe
ially

when one 
onsiders that the for
e parameters used were �tted to �nite nu
lei.

In addition, di�erent mass formula �ts to the data give slightly di�erent \exper-

imental" results for nu
lear matter properties, so, for instan
e, a re
ent paper of

Heiselberg[86℄ gives �

0

= -15:6� 0:2MeV and they 
onsider the value of the sat-

uration to be more un
ertain, at �

0

= 0:16� 0:02 fm

-3

. The 
urve for PNM shows

the result that neutron matter is unbound at any density and everywhere less sta-

ble than symmetri
 matter, as it should be. This is in 
ontrast to most Skyrme

intera
tions �tted to �nite nu
lei whi
h have PNM more stable than SNM above

a threshold density whi
h may be quite low (� 0:4 fm

-3

in the 
ase of the for
e

parameterisation SIII[22℄).
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Figure 6.1: Energy per parti
le in Symmetri
 Nu
lear Matter (SNM) and Pure Neutron

Matter (PNM). The saturation density is �

0

= 0:155 fm

-3

and the energy per nu
leon at

saturation is -15:56 MeV.
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For
e Separable SIII[80℄ SGII[81℄ SkM

�

[82℄ SkP[83℄ T6[84℄ SLy230a[22℄

�

0

0.155 0.145 0.158 0.160 0.162 0.161 0.160

k

F

1.319 1.291 1.328 1.333 1.340 1.355 1.133

r

0

1.155 1.180 1.147 1.143 1.137 1.141 1.143

�

0

-15.56 -15.85 -15.59 -15.77 -15.95 -15.96 -15.97

K

1

218.2 355.4 214.6 216.6 201.0 135.9 229.9

m

�

1

=m 1.0 0.76 0.79 0.79 1.0 1.0 0.695

a

s

36.90 28.16 26.83 30.03 30.00 29.97 32.01

Table 6.1: Properties of in�nite nu
lear matter at equilibrium for the separable inter-

a
tion used in this thesis as well as some typi
al Skyrme intera
tions. The observables

are the equilibrium density, �

0

[fm

-3

℄, the Fermi momentum, k

F

[fm

-1

℄, r

0

= (9�)

1=3

=2k

f

[fm℄ is the mean distan
e between two nu
leons in the 
uid, �

0

[MeV℄ is the energy at

saturation density, K

1

[MeV℄ is the in
ompressibility, m

�

=m is the e�e
tive mass and a

s

[MeV℄ is the asymmetry energy.

A 
omparison of various observables between the sele
tion of Skyrme for
es

used in the paper of Chabanat et. al.[22℄ and the separable for
e of this thesis

is presented in Table 6.1. The �rst �ve Skyrme parameterisations listed were


hosen to be a representative sample and the �nal one, SLy230a was the result of

�tting to neutron-ri
h neutron matter and neutron star properties. Most of the

observables 
ompare favourably with those of the best Skyrme parameterization

listed, SLy230a. The asymmetry parameter is perhaps too high, but it is 
loser to

the value of that for SLy230a than the other listed parameterisations.

6.5 Neutron Star

One possible result of the 
ollapse of a normal star at the end of its life is the

formation of neutron star. Radio pulsars su
h as the obje
t in the remnant of

the Crab supernova are believed to be su
h stars whi
h begin their life rotating

rapidly but slow down rather qui
kly due to their high magneti
 �elds. The sup-

posed stru
ture of a neutron star is shown s
hemati
ally in Figure 6.2. It is from

the equations of state (EoS) of the realisti
 intera
tions that this pi
ture is inferred

and although the detailed results di�er as one 
onsiders di�erent models and in-

tera
tions, the general features are the same. At the surfa
e the density is only on

the order of � 10 g 
m

-3

, whi
h is about the same as `normal' matter. The density

rises rapidly through two layers of 
rust to � 2 � 10

14

g 
m

-3

. The outer layer of


rust 
onsists of a gas of nu
lei and ele
trons. Above the neutron drip density

� 4� 10

11

g 
m

-3

the gas is supplemented by neutrons to form the inner 
rust. At
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~ 0.5 km
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-nuclei + e
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Inner crust :
nuclei, neutrons + e -
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4    10  g cm 
 11

2    10  g cm 
14

−n + p + e  +

Figure 6.2: S
hemati
 view of the possible stru
ture of a neutron star showing regions

where nu
lei and nu
lear matter dominate. The 
entral region may be quark matter.

Figure is take from Ref.[86℄

greater densities, from about � 4�10

11

g 
m

-3

to � 10

15

g 
m

-3

the star 
onsists of

homogeneous nu
lear matter with ele
trons and, above the threshold density for

their 
reation, muons. At higher densities, in the 
ore, hyperons may appear, or

even quark matter. Sin
e the intera
tion under study is between nu
leons only,

the npe� region is extrapolated to the 
ore. This is the te
hnique adopted by

Chabanat et. al.[22℄ and Wiringa et. al.[87℄.

In this se
tion, the usual notation for des
ribing neutron stars is used, whi
h

is somewhat 
ontrary to the usual nu
lear physi
ist's notation for nu
lear mat-

ter. The number densities are written as n

b

, n

p

and n

n

for baryons, protons and

neutrons respe
tively. The symbol � is used as the mass density.

To des
ribe a neutron star's properties an equation of state is derived whi
h is

the pressure as a fun
tion of the density

P(n

b

) = n

2

b

d(e=n

b

)

dn

b

(6.43)

where e is the energy density, and is related to the mass density �(n

b

) = e(n

b

)=


2

.

The equation of state is derived in Appendix G.



CHAPTER 6. NUCLEAR MATTER AND NEUTRON STAR CALCULATIONS 65

EOS Separable SLy230a SLy230b Separable SLy230a SLy230b


on�guration M

max

M

max

M

max

1:4M

�

1:4M

�

1:4M

�

n




(fm

-3

) 1.14 1.15 1.21 0.459 0.508 0.538

�




(10

14

g 
m

-3

) 26.6 26.9 28.5 8.43 9.25 9.85

R (km) 10.3 10.25 9.99 12.1 11.8 11.7

M (M

�

) 2.02 2.10 2.05 1.40 1.40 1.40

A (10

57

) 2.80 2.99 2.91 1.84 1.85 1.85

E

bind

(10

53

erg) 5.69 7.07 6.79 2.34 2.60 2.61

z

surf

0.539 0.591 0.593 0.233 0.240 0.244

Table 6.2: Parameters of the neutron star models. n




is the 
entral number density and

is the independent variable in the equation of state. �




is the 
entral mass density. R

is the radius of the star, M is the mass in units of the solar mass. A is the number of

baryons. E

bind

is the binding energy of the star and z

surf

is the gravitational red-shift (see

ref [22℄)

The 
al
ulation of a neutron star in this work is valid for non-rotating neutron

stars. This is ne
essary for a simple 
al
ulation to be possible, and thanks to

the Hubble teles
ope a non-rotating, non-a

reting neutron star has a
tually now

been observed due to its thermal emission alone[88℄. For su
h a non-rotating

star, Tolman, Oppenheimer and Volko� (TOV) derived an equation of hydrostati


equilibrium[89, 90℄:

dP

dr

= -

Gm�

r

2

�

1+

P

�


2

� �

1+

4�r

3

P

m


2

�

1-

2Gm

r


2

(6.44)

with

m(r) =

Z

r

0

4�r

0

2

�(r

0

)dr

0

: (6.45)

To solve these equations the following pro
edure is used:

� A 
entral density, �




is 
hosen. This gives from the EoS the 
entral pressure,

P




. The boundary 
ondition m(r = 0) = 0 is 
hosen.

� The TOV equation, (6.44), and the mass relation (6.45) are integrated nu-

meri
ally out from r = 0. This yields at ea
h step a pressure, P(r), given by

the EoS.

� The 
ondition P = 0 de�nes the surfa
e of the star, at whi
h r = R is the

radius and m(R) is the mass.

With this pres
ription the TOV equation is solved for a number of 
entral densi-

ties. A 
onsequen
e of general relativity is that a maximum mass exists for the

star. Results for some observables are shown in Table 6.2 for the maximum mass
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Figure 6.3: Gravitational mass in units of solar mass of neutron star as a fun
tion of the


entral baryon density. Solid line is for the separable intera
tion in this thesis and the

dashed line is for the Skyrme parameterisation SLy230a[22℄.

star and for a star of mass 1:4M

�

whi
h is a 
ommonly 
hosen ben
hmark in the

literature. The results for the separable for
e are 
ompared with results from Cha-

banat et. al. [22℄ whi
h are for Skyrme for
e parameterisations �tted to nu
lei at

the extremes of density and isospin asymmetry.

Figure 6.3 shows themass of the neutron star as a fun
tion of the 
entral baryon

density. The 
on
lusion from these results is that the separable intera
tion gives

rather similar results to the best Skyrme intera
tions used for neutron star 
al
u-

lations. The Skyrme for
es to whi
h the separable intera
tion is 
ompared were

themselves 
ompared[22℄ to the \realisti
" 
al
ulations of Wiringa et. al.[87℄

and found to be very similar. The separable for
e, then, predi
ts similar neutron

star properties to other 
ontemporary models, using both realisti
 and e�e
tive

intera
tions.

Figure 6.4 shows neutron star binding energy as a fun
tion of mass. The box in-

di
ates the measured mass and binding energy, based on observed energy release,

of the neutron star whi
h presumably was 
reated in the supernova 1987A[91℄.

The separable for
e 
al
ulations are 
onsistent with this observation sin
e part of

the 
urve lies within the box.
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Figure 6.4: Binding energy of a neutron star as a fun
tion of its mass. The box represents

the possible values for the neutron star 
reated in Supernova 1987A.

6.6 Perturbation Cal
ulations

So far the treatment of nu
lear matter has been at the mean-�eld level with the

single-parti
le states being plane waves. One would also like to 
al
ulate the 
or-

re
tions to this approximation sin
e they 
ould be quite large, parti
ularly in the


ase of hard-
ore potentials. The usual approa
h taken in these 
ases is to in-


lude all the ladder diagrams whi
h is fa
ilitated by solving the Bethe-Goldstone

equation[92, 36℄. In the 
ase of the separable intera
tion, the following remark-

able property holds: In in�nite nu
lear matter the solution of the HF equations

represents the exa
t ground state. To see this, one notes that the 
orrelations to

�

r s

b

a

Figure 6.5: Insertion appearing at the bottom of every Hugenholz diagram for the va
-

uum amplitude.
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the ground state energy 
an be des
ribed in terms of Hugenholz diagrams (See

Appendix D). Following the rules given in the Appendix, one �nds that all dia-

grams must in
lude the insertion shown in Figure 6.5. This follows from the fa
t

that a diagram must have a lowest dot, in the sense of being at the bottom of the

diagram (i.e. earliest in time-ordering). Sin
e four lines must leave this dot and

they must 
onne
t to others, ea
h of the lines must move upwards. Furthermore,

by the rules of labelling lines, two of them must enter the dot and two must leave,

so two are hole lines and two are parti
le lines. The matrix element asso
iated

with this dot is then

habj

~

Vjrsi (6.46)

with a and b representing hole states and r and s representing parti
le states. Due

to the nature of the separable intera
tion, the matrix element be
omes

habj

~

Vjrsi /

�

haj�

�

jrihbj�

�

jsi- haj�

�

jsihbj�

�

jri

�

(6.47)

whi
h is zero sin
e the density is just a 
onstant in in�nite nu
lear matter and ea
h

hole state is orthogonal to ea
h parti
le state.



Chapter 7

Ground-State Properties of Nu
lei

This 
hapter presents results for a set of parameters �tted a

ording to the pre-

s
ription of Chapter 3. All Hartree-Fo
k 
al
ulations are performed in a basis with

12 radial states per angular momentum state and iteration 
ontinues until the HF

energy has 
onverged to 10keV. The resulting set of basis states then forms the

referen
e state used in the perturbation 
al
ulation. Sin
e ample experimental

data exist for �nite nu
lei, unlike in�nite nu
lear matter, the emphasis is on 
om-

parison to experimental data rather than to other intera
tions.

7.1 For
e Parameters

The parameters for the monopole for
e are presented in Table 7.1. The higher

multipole parameters are not in
luded in this �t sin
e their main 
ontribution is

to ex
ited states and to deformations and �xing the parameters to a �t to ground-

state properties of spheri
al nu
lei is not appropriate. Some dis
ussion of their

possible role in the region of this �t is given.

W

a

�

a

�

a

a

a

b

a

-1543.8 MeV fm

3

2.0 1.0 -0.4295 -0.419825

W

r

�

r

�

r

a

r

b

r

1778.0 MeV fm

3:8265

2.2165 1.246 -1.4788 -0.314625


 k

160.0 Mev fm

5

16.0 Mev fm

10

Table 7.1: Monopole for
e parameters

69
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7.2 Nu
lear Energies

The nu
lear energies per parti
le of the nu
lei in the �t are plotted in Figure 7.1

in the HF approximation and 
ompared to the experimental results. Most of the

experimental data are taken from Ref. [93℄ and have an experimental error of

300 keV or less, whi
h makes the error bar smaller than the symbol on the plot

in all 
ases. The value for

100

Sn was re
ently measured at 825.8(9) Mev[94℄. The

data for

48

Ni is extrapolated from a systemati
 study and is assumed to have an

error of only about 200 keV [97℄. The value for

78

Ni is also an extrapolated value.

The 
ontributions due to the perturbation theory are not shown in the �gure sin
e

they are rather small and would not be readily distinguishable from the points for

the Hartree-Fo
k energies for most of the nu
lei. They are presented in Table 7.2

along with the experimental values.

The 
al
ulated energies are seen to follow the same trends as the theoreti
al


urve, although there are some notable ex
eptions.

16

O is 
learly very under-

bound. Owing to the fa
t that the 
entre-of-mass 
orre
tion is not treated, one

50 100 150 200

A

6.5

7

7.5

8

8.5

9

η 
[M

eV
]

Hartree−Fock
Experiment

Figure 7.1: Binding energy per nu
leon in HF approximation



CHAPTER 7. GROUND-STATE PROPERTIES OF NUCLEI 71

Nu
leus E

HF

E

(2)

E

(3)

hh

E

(3)

pp

E

(3)

ph

E

HF+2+3

� Expt.

16

O -109.32 -3.31 -0.1365 -0.3624 +0.921 -112.21 0.063 -127.68

34

Si -280.88 -7.37 -0.0384 -0.4830 +1.223 -287.55 0.232 -283.43

40

Ca -334.53 -2.51 -0.0323 -0.1114 +0.233 -336.95 0.052 -342.00

48

Ca -417.01 -5.97 -0.0189 -0.2725 +0.273 -422.70 0.202 -416.16

48

Ni -360.69 -6.57 -0.0130 -0.2058 +0.427 -367.05 0.234 -348.33

56

Ni -481.25 -2.31 -0.0210 -0.0643 +0.123 -483.52 0.046 -483.99

68

Ni -593.33 -6.00 -0.0109 -0.2091 +0.484 -598.85 0.221 -590.43

78

Ni -651.90 -8.34 -0.0053 -0.1458 +0.477 -659.92 0.342 -641.38

80

Zr -663.41 -1.87 -0.0087 -0.0411 +0.107 -665.22 0.044 -669.79

90

Zr -782.70 -3.91 -0.0070 -0.1257 +0.103 -786.51 0.149 -783.89

100

Sn -825.65 -1.71 -0.0060 -0.0220 +0.048 -827.35 0.039 -825.80

114

Sn -963.20 -4.04 -0.0046 -0.1093 +0.226 -967.12 0.162 -971.57

132

Sn -1097.65 -6.17 -0.0023 -0.0864 +0.209 -1103.70 0.287 -1102.92

146

Gd -1190.32 -3.42 -0.0026 -0.0699 +0.142 -1193.66 0.146 -1204.44

208

Pb -1599.04 -4.51 -0.0013 -0.0664 +0.108 -1603.51 0.233 -1636.45

Table 7.2: Monopole Hartree-Fo
k energy and 
orre
tions from perturbation theory


ompared with experimental value. All energies are in MeV

might expe
t to do quite badly in the lightest nu
lei. On the other hand, typi
al

values for the 
entre-of-mass 
orre
tion in

16

O are about ten MeV[95℄ whi
h is

about half the di�eren
e between the experimental and 
al
ulated value presented

here. Of 
ourse, one would need to re-�t the parameters in any 
ase if the 
enter-

of-mass 
orre
tion were in
luded. An alternative possibility is that the value of

the a-parameters are too large. From Fig. 5.3 it is seen that the 
ontribution

to the HF energy from the ex
hange term proportional to the a parameters is

parti
ularly large and positive for

16

O. Its value is sele
ted to improve the overall

�t, but it does so at the expense of the �t to

16

O. A possible solution lies in the

multipole for
es whi
h for spheri
al nu
lei a
t only in the ex
hange term whi
h,

like the monopole terms, presumably is strongest in the lightest nu
lei, the 
hoi
e

of the A-dependent f

D

and f

Q

parameters notwithstanding.

The quality of the �t elsewhere is mu
h better, with the next worst 
ase after

oxygen being

40

Ca, whose Hartree{Fo
k binding energy is about �ve per
ent o�

the experimental value. At the other end of the 
hart,

208

Pb is under-bound by

quite a large amount in terms of total binding, but is not as serious a dis
repan
y

in terms of energy per parti
le as in the lightest nu
lei.

7.2.1 Perturbation Corre
tions

The smallness of the perturbation 
orre
tions in all the nu
lei is notable. This

work was predi
ated on the premise that it would be possible to �nd an e�e
tive
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intera
tion whi
h, when used in perturbation theory, would 
onverge qui
kly with

small 
orre
tions on top of the mean-�eld, and this is 
ertainly a 
hara
ter of

the 
hosen intera
tion. It is diÆ
ult to say how large the 
orrelations ought to

be sin
e, as was pointed out in Chapter 2, the size of the 
orrelations depend

upon the eÆ
a
y of the single parti
le Hamiltonian. As a matter of 
omparison,


orrelation e�e
ts in Skyrme intera
tions have been estimated to be order of about

ten MeV[96℄ for the total binding energy.

The A-dependen
e of the se
ond order 
orre
tion seems to be that the total


orre
tion to the HF energy remains of about the same order for nu
lei a
ross

the periodi
 table. It has already been shown that the 
orre
tion per nu
leon in

in�nite nu
lear matter is zero so the 
orre
tions for any diagram in �nite nu
lei

must have an A-dependen
e weaker than / A. The reason for the la
k in in
rease

in binding energy 
orre
tion in heavier nu
lei may be explained in a similar way

to the zero nu
lear matter 
orre
tions. In that 
ase it was the 
onstant density

whi
h produ
ed zero matrix elements. In the 
ase of a heavy nu
leus, the density

is quite 
onstant over the interior and only 
hanges at surfa
e, whi
h may be of

about the same width as in a light nu
leus. In this way, the 
orrelations may be

seen as predominantly a surfa
e e�e
t, even though the for
e a
ts equally strongly

over all ranges in the nu
leus.

In addition, the 
orre
tions from perturbation theory are seen to be greater in

N6=Z nu
lei. From the dis
ussion of the isospin-dependent term in Chapter 5, the

reason for this is known to be that in N6=Z nu
lei the isospin \
ipping" operator,

�

+

1

�

-

2

+ �

-

1

�

+

2

, allows ex
itations in the same major shell to o

ur whi
h give a large


ontribution. It is presumably not the 
ase that N=Z nu
lei in fa
t have less 
or-

relation energy than N6=Z nu
lei so it may be ne
essary to 
onsider redu
ing the

strength of the isospin-dependent terms, although this would redu
e the overall

quality of the �t. On the other hand the in
lusion of multipole for
es whi
h al-

low for a mu
h broader range of ex
itations than the monopole for
e alone should

smooth out these di�eren
es and in
rease the magnitude of the 
orrelations.

In addition to the size of the 
orrelations, the sign is also interesting. The se
-

ond order 
orre
tion is always negative de�nite but higher order 
orre
tions may

be of any sign. In the third order the largest, by far, diagram { the parti
le-hole

diagram { is always seen to be positive. This is in a

ord with studies of 
orrela-

tions with other for
es [54, 96℄. That it is the largest 
ontribution suggests that

long-range 
orrelations are the most important e�e
t arising from the monopole

intera
tion.

7.3 Charge Radii and Densities

The root mean-square 
harge radii for the nu
lei in the �t are given in Table 7.3

along with experimental data for those nu
lei where it exists. The agreement with

experiment is seen to be very good, with the main ex
eption being

16

O, in whi
h
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Nu
leus r


h

HF (fm) r


h

exp (fm)

16

O 2.85 2.69

34

Si 3.19

40

Ca 3.54 3.48

48

Ca 3.47 3.48

48

Ni 3.88

56

Ni 3.84 3.78

68

Ni 3.89

78

Ni 3.87

80

Zr 4.33

90

Zr 4.29 4.27

100

Sn 4.60

114

Sn 4.65 4.60

132

Sn 4.66

146

Gd 5.02 4.96

208

Pb 5.50 5.50

Table 7.3: Root mean-squared 
harge radii in HF approximation and experimentally.

Experimental data is from [99℄

the error is about 5%, whi
h is rather less than the error in the binding energy. The

results are also displayed graphi
ally in Fig. 7.2. The radii seem, in general, to

be better reprodu
ed than the binding energies, although data is not available for

some of the more weakly bound nu
lei presented. The radii for the under-bound

light nu
lei are somewhat too large, whi
h is what one should reasonably expe
t

to a

ompany under-binding. The relative good quality of the 
harge radii over

the binding energy suggests that the single parti
le properties are 
omparatively

better reprodu
ed than many-body properties in the HF approximation.

Figures 7.3-7.17 show the point neutron, proton, 
harge and total densities

for all the nu
lei under 
onsideration. In all plots, the total point density is the

same on both sides of the y-axis. The left-hand side also gives the neutron point

density and the right-hand side shows the proton point density as well as the


harge density and, in 
ases where data is available, the experimental data.

The experimental data for the 
harge density is from the Fourier-Bessel de-


omposition in table IX of Ref. [99℄. Even for those nu
lei for whi
h no data is

available, the densities are plotted sin
e they have a dire
t physi
al interpretation

and they play an important role in the present intera
tion.

As shown by the moderate error in the 
harge radii, there is a visible dis
rep-

an
y in the 
harge densities of

16

O and

40

Ca, parti
ularly in the 
entral region,

though the error in the Fourier-transformed experimental data is the greatest in

this region. This error should probably not be taken too seriously sin
e no 
entre-

of-mass 
orre
tion is taken into a

ount. The s
ale on all the plots is the same
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Figure 7.2: Mean squared 
harge radii in HF approximation and experimentally. Exper-

imental data is from the same referen
e as Table 7.3

and it is easily seen that the 
entral total densities for all the nu
lei lie around the

expe
ted region of � 0:16 fm

-3

.
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7.4 Form fa
tors

The 
harge form fa
tors are shown for those nu
lei where experimental data is

available, namely

16

O,

40

Ca,

48

Ca,

90

Zr and

208

Pb. The position of the �rst zero is


learly moves lower in momentum as Z in
reases, showing the in
rease in radius.

As one would expe
t having already seen the �ts to the densities, the quality of

ea
h �t to the Fourier transforms of the density are roughly equal in quality to

the �ts to the density. They are presented along with the densities sin
e they are

dire
tly related to the experimental observables, as mentioned in Chapter 5.
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7.5 Single-Parti
le energies

Cal
ulated single parti
le energies are shown in Figures 7.23-7.28 
ompared to

experimental data, taken from Refs.[21℄ and [97℄. Only the nu
lei for whi
h ex-

perimental data were available are plotted, ex
ept

90

Zr for whi
h neutron data are

available. The position of the fermi level is indi
ated by the en
ir
led number,

whi
h itself shows how many parti
les o

upy the levels up to that point.

Firstly, one notes that the N;Z = 8 shell 
losures in

16

O are somewhat poor, as

is the 20 parti
le shell 
losure in

40

Ca. This appears to be due in part to the overly-

deep binding of the d

5=2

state above the N;Z = 8 shell and the f

7=2

state above the

N;Z = 20 shell. The o

upied states nearest the fermi level appear also to be

pushed up, but given the underbinding in these light nu
lei, the ex
essive depth

of the uno

upied levels seems more remarkable. The e�e
t does not take pla
e

for the N;Z = 12 or N;Z = 28 gaps. The fa
t that the pushed-down states are the

lowest states of their given angular momentum may be of some signi�
an
e. Sin
e

the monopole for
e only involves intera
tions between single-parti
les and other

single-parti
les with exa
tly the same angular quantum numbers, the set of states

of a given angular momentum for whi
h not even the lowestN-state is uno

upied

feel the ex
hange intera
tion di�erently to those states in whi
h at least one state

sharing angular quantum numbers is o

upied. This e�e
t was noti
ed earlier in

Fig. 5.15 where it was seen that 0f

7=2

and 0f

5=2

states in

48

Ca had di�erent single-

parti
le energies in the absen
e of the spin-orbit for
e. Alternatively, sin
e the

smallness of the Z = 20 gap in

48

Ca is not so extreme, and the N = 20 gap in

34

Si is quite satisfa
tory, it 
ould be that the problem is something to do with the

properties of N = Z nu
lei.

In the heavier nu
lei (

132

Sn and

208

Pb) the level densities and shell gaps 
or-

respond mu
h more 
losely to experiment than in the lighter nu
lei. A possible

fa
tor here, as elsewhere, is the omission of the 
entre-of-mass 
orre
tion is neg-

ligible in the heavy nu
lei but not so in the lighter. Some of the details of the level

ordering for neutron states in

132

Sn is seen to be at odds with experiment. It is

noted that this is a 
ommon feature of Skyrme mean-�eld 
al
ulations[97℄.

The results in the light nu
lei are similar to those in a re
ent work by Brown[97℄

in whi
h a Skyrme paramaterisation was �tted to, amongst other things, the single

parti
le spe
tra of light nu
lei. He attributed the too-small gap in

16

O and

40

Ca

as being due to not 
onsidering 
orrelation e�e
ts in whi
h single parti
les are

ex
ited a
ross the gap. A 
al
ulation with just the monopole for
e alone would

not a

ount for the lowest energy ex
itations, but the quadrupole for
e might

improve matters if its 
ontribution to the mean-�eld is 
al
ulated, or it is used to

evaluate 
orre
tions to the single-parti
le energies in perturbation theory.
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Chapter 8

Summary and Con
lusions

A density-dependent separable multipole intera
tion has been presented and used

in 
al
ulations of even-even spheri
al nu
lei in the Hartree-Fo
k approximation

on top of whi
h 
orre
tions to third order in the energy have been 
al
ulated. In

addition, the properties of symmetri
 and asymmetri
 nu
lear matter have been

studied as well as those of a neutron star.

From 
al
ulations of the perturbation series, it is found that the intera
tion

is weak and the �rst terms in the perturbation series are small and appear to


onverge quite rapidly.

An approximate �t of the for
e parameters has been made to the ground-state

properties of �nite nu
lei and the single-parti
le observables (single-parti
le en-

ergies and one-body densities) agree well with experiment. The agreement of the

HF energy is quite reasonable, but not of the same quality as 
ontemporary ef-

fe
tive intera
tions used in HF models. However, this work represents the most

su

essful appli
ation of the standard perturbation theory 
al
ulation in nu
lei,

improving quite signi�
antly on the quality of the results 
ompared to previous


al
ulations, whi
h were dis
ussed in Chapter 3.

A de�
ien
y of the present 
al
ulation is the un
ertainty over the multipole

parameters. Sin
e the multipole e�e
ts manifest themselves in su
h ways as de-

formations and ex
ited state spe
tra, it is not possible to determine their strengths

with the 
al
ulation of the ground states of spheri
al nu
lei. The next step there-

fore is to perform 
al
ulations of deformed nu
lei to �t the multipole parameters

and to develop te
hniques to 
al
ulate ex
ited state properties using perturbation

theory.
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Appendix A

Hartree{Fo
k Equations

The Hartree-Fo
k (HF) approximation is based on the idea that a system of inter-

a
ting fermions may be des
ribed as a system of fermions moving independently

in a one-body potential. This \mean �eld" is supposed to des
ribe the average of

the intera
tions of a given parti
le with all the others.

This mean �eld is represented by a one-body Hamiltonian, the HF Hamilto-

nian, the solution the one-dimensional S
hr �odinger equation with this Hamilto-

nian gives the single parti
le states whi
h the fermions o

upy:

^

h

HF

(x)'

b

(x) = �

i

'

i

(x): (A.1)

To determine the HF potential one makes the ansatz of a Slater determinant

of the single parti
le wavefun
tions for the many-body wavefun
tion:
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and requires that the expe
tation value of the full Hamiltonian in this state be an

extremum. One thus varies this expe
tation value with respe
t to the set of single

parti
le wavefun
tions and sets it to zero:

Æ

Æ'

�

i

(x)

2

4

h�j

^

Hj�i-

N

X

i=1

�

i

Z

dy'

�

(y)'(y)

3

5

= 0 (A.3)

where the N Lagrange multipliers serve to ensure the normalization of the single

parti
le wave-fun
tions. Note that the pres
ription for �nding the HF Hamilto-

nian depends on the single parti
le wavefun
tions whi
h are its solution, so there

is a self-
onsisten
y 
ondition whi
h is usually dealt with by solving the HF equa-

tions iteratively. These HF equations are derived from the variational equation
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(A.3) by expressing the expe
tation value of the Hamiltonian in a Slater determi-

nant in se
ond quantization notation:

h�j
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where u is the one-body part of the intera
tion, in
luding kineti
 energy term,

and v is the two-body part. Using the result from fun
tional 
al
ulus
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the variational equation be
omes
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by relabelling dummy indi
es and 
oordinate labels, the se
ond and third and

the �fth and sixth terms are seen to be equal. Furthermore, expressing the one-

parti
le density and two-parti
le density matrix of a Slater determinant as
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the equation (A.6) be
omes
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The �rst line of this equation is in the form of an eigenvalue problem and is the

standard Hartree-Fo
k equation. From it, a one-body potential may be de�ned:

U

HF

(x)'

i

(x) =

"

u(x) +

Z

dy�(y)v(x; y)

#

'

i

(x) -

Z

dy�(x; y)v(x; y)'

i

(y) (A.7)

whi
h is the Hartree-Fo
k potential. Note that it is inherently non-lo
al in nature

thanks to the ex
hange term. In addition, if the potentials u(y) or v(x; y) depend

on the wavefun
tion - in pra
ti
e this means dependent on the densities - then

the se
ond and third lines of (A.6) are non-zero and there is a further 
ontribution

to the Hartree-Fo
k potential, known as the rearrangement potential.



Appendix B

Many-Body Perturbation Theory

B.1 Hartree-Fo
k and Perturbation Theory

The Hamiltonian for a system of fermions intera
ting via one and two body inter-

a
tions is written, in the language of se
ond-quantization,

H =

X

a


hajuj
ia

y

a

a




+

1

4

X

ab
d

habj~vj
dia

y

a

a

y

b

a

d

a




: (B.1)

Here the one-body part of the Hamiltonian is labelled u. The two-body part is

v and a

y

and a are fermion 
reation and annihilation operators respe
tively. If

one applies Wi
k's theorem[100℄, whi
h states that a produ
t of operators may

be written as the sum of all 
ontra
ted normal-ordered produ
ts, the Hamiltonian

be
omes

H =

X

a


hajuj
i

�

: a

y

a

a




: +a

y

a

a




	

+

1

4

X

ab
d

habj~vj
di

�

: a

y

a

a

y

b

a

d

a




: -a

y

a

a

d

: a

y

b

a




:

+ a

y

a

a




: a

y

b

a

d

: -a

y

b

a

d

: a

y

a

a




: +a

y

b

a




: a

y

a

a

d

: -a

y

a

a

d

a

y

b

a




+ a

y

a

a




a

y

b

a

d




(B.2)

where the 
olons (:) denote normal-ordering of the operators within them and the

bra
es denote 
ontra
tions. Only 
ontra
tions between a 
reation and annihilation

operator have been retained sin
e all other 
ontra
tions are zero in the 
ase of a

sharp fermi surfa
e, whi
h is always true in the representation under 
onsideration

in this work.

The 
ontra
tions a

y

a

a




are zero if either states a or 
 are uno

upied and Æ

a


otherwise so the Hamiltonian redu
es to

H =

X

h<�

F

hhjujhi+

X

a


hajuj
i : a

y

a

a




: +

1

4

X

ab
d

habj

~

Vj
di : a

y

a

a

y

b

a

d

a




:

-

1

4

X

b


X

h<�

F

hhbj~vj
hi : a

y

b

a




+

1

4

X

a


X

h<�

F

hahj~vj
hi : a

y

a

a




:
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+

1

4

X

bd

X

h<�

F

hhbj~vjhdi : a

y

b

a

d

: -

1

4

X

ad

X

h<�

F

hahj~vjhdi : a

y

a

a

d

:

-

1

4

X

hh

0

<�

F

hhh

0

j~vjh

0

hi+

1

4

X

hh

0

<�

F

hhh

0

j~vjhh

0

i; (B.3)

where h represent hole states, i.e., states whi
h are o

upied in the representation

used. Sin
e the matrix elements are anti-symmetrized and, using the symmetry

habj~vj
di = hbaj~vjd
i, the Hamiltonian redu
es to

H =

X

h<�

F

hhjujhi+

1

2

X

hh

0

<�

F

hhh

0

j~vjhh

0

i

+

X

a


fhajuj
i+ hahj~vj
hig : a

y

a

a




:

+

1

4

X

ab
d

habj~vj
di : a

y

a

a

y

b

a

d

a




: (B.4)

Taking the expe
tation value of the Hamiltonian in the referen
e state j0i of o
-


upied orbitals below the Fermi surfa
e, only the terms without normal-ordered

produ
ts survive:

E

0

� h0jHj0i =

X

h<�

F

hhjujhi+

1

2

X

hh

0

hhh

0

j~vjhh

0

i: (B.5)

The se
ond line of Equation (B.4) des
ribes a one-body �eld. It is written for in an

arbitrary Hilbert spa
e representation and one is free to 
hoose a parti
ular basis.

A 
onvenient 
hoi
e is that whi
h diagonalizes this single-parti
le Hamiltonian,

i.e.

hajuj
i+

X

h<�

F

hahj~vj
hi = �

a

Æ

a


(B.6)

whi
h 
an be written as

haju+wj
i = �

a

Æ

a


(B.7)

with the one-body �eld w de�ned as

hajwj
i �

X

h<�

F

hahj~vj
hi: (B.8)

Equation (B.6) is just the Hartree-Fo
k equation in se
ond quantized notation.

This 
an be seen by taking equation (A.6) and a
ting left with

R

dx'

�

a

(x):

�

i

Æ

ia

=

Z

dx'

�

a

(x)u(x)'

i

(x) +

Z

dx

Z

dy

X

h<�

F

'

�

a

(x)'

�

h

(y)v(x; y)'

i

(x)'

h

(y)

-

Z

dx

Z

dy

X

h<�

F

'

�

a

(x)'

�

h

(y)v(x; y)'

h

(x)'

i

(y) (B.9)
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whi
h is just (B.6) in 
oordinate spa
e, so that the Hamiltonian redu
es to the

form

H = E

0

+

X

a<�

F

�

a

: a

y

a

a

a

:

| {z }

H

0

+

1

4

X

ab
d

habj~vj
di : a

y

a

a

y

b

a

d

a




:

| {z }

H

1

(B.10)

where a division of the Hamiltonian into parts labelled H

0

and H

1

is given for the

purposes of performing perturbation theory.

B.2 Many-Body Perturbation Theory

Having partitioned the Hamiltonian into two parts, H = H

0

+H

1

it is assumed that

the eigenvalue problem asso
iated with H

0

has been solved:

H

0

j�

n

i = W

n

j�

n

i: (B.11)

A parameter is separated out of the perturbing term: H

1

= �

�

H

1

so that it 
an be

used to keep tra
k of the order of perturbation theory. In the end it 
an be set to

unity.

The full S
hr �odinger equation whi
h needs to be solved is

Hj	

0

i = E

0

j	

0

i; (B.12)

for the ground state of the system. One has

H

1

j	

0

i = (H-H

0

)j	

0

i = (E

0

-H

0

)j	

0

i

then h�

0

jH

1

j	

0

i = h�

0

jE

0

-H

0

j	

0

i = (E

0

-W

0

)h�

0

j	

0

i:

The energy shift, the di�eren
e between the exa
t and unperturbed energies is

thus

�E � E

0

-W

0

=

h�

0

jH

1

j	

0

i

h�

0

j	

0

i

: (B.13)

The operator whi
h proje
ts onto the ground state of the unperturbed problem is

de�ned as

P � j�

0

ih�

0

j; (B.14)

and its 
omplement is

Q � 1- P =

1

X

n=1

j�

n

ih�

n

j: (B.15)

This operator, Q 
ommutes with H

0

so

(E-H

0

)Qj	

0

i = Q(E-H

0

)j	

0

i = Q(E- E

0

+H

1

)j	

0

i; (B.16)
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for an arbitrary number, E. Therefore

Qj	

0

i =

1

E -H

0

Q(E- E

0

+H

1

)j	

0

i = j	

0

i- j	

0

ih�

0

j�

0

i; (B.17)

then by de�ning

j�i =

j	

0

i

h�

0

j	

0

i

equation (B.17) be
omes

j�i = j�

0

i+

1

E

0

-H

0

Q(E- E

0

+H

1

)j�i (B.18)

whi
h 
an be iterated to give

j�i = j�

0

i+

1

E

0

-H

0

Q(E- E

0

+H

1

)

�

j�

0

i+

1

E

0

-H

0

Q(E- E

0

+H

1

) f� � �g




=

1

X

n=0

"

1

E -H

0

Q(E- E

0

+H

1

)

#

n

j�

0

i (B.19)

Using this in the expression (B.13) for the energy shift, one obtains

�E = h�

0

j�i =

1

X

n=0

h�

0

jH

1

"

1

E -H

0

Q(E- E

0

+H

1

)

#

n

j�

0

i: (B.20)

This expression is true for any value of the number E. Setting E = W

0

, the ground

state eigenvalue of the unperturbed problem, the resulting expressions give the

Rayleigh-S
hr �odinger perturbation theory:

j�i =

1

X

n=0

"

1

W

0

-H

0

Q(W

0

- E

0

+H

1

)

#

n

j�

0

i (B.21)

�E =

1

X

n=0

h�

0

jH

1

"

1

W

0

-H

0

Q(H

1

- �E)

#

n

j�

0

i: (B.22)

Note that by setting E = E

0

one obtains the Brillouin-Wigner perturbation series.

To obtain the perturbation series order by order, terms in (B.21) and (B.22)

are grouped a

ording to the order of the 
oupling 
onstant �. For the energy:

n = 0 : h�

0

jH

1

j�

0

i � � (B.23)

n = 1 : h�

0

jH

1

1

W

0

-H

0

Q(H

1

- �E)j�

0

i

= h�

0

jH

1

1

W

0

-H

0

QH

1

j�

0

i- h�

0

jH

1

1

W

0

-H

0

Q�Ej�

0

i
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= h�

0

jH

1

1

W

0

-H

0

1

X

n=1

j�

n

ih�

n

jH

1

j�

0

i

=

1

X

n=1

h�

0

jH

1

j�

n

i

W

0

-W

n

h�

n

jH

1

j�

0

i � �

2

n = 2 : h�

0

jH

1

"

1

W

0

-H

0

Q(H

1

- �E)

#

2

j�

0

i

= h�

0

jH

1

1

W

0

-H

0

Q(H

1

- �E)

1

W

0

-H

0

Q(H

1

- �E)j�

0

i

= h�

0

jH

1

1

W

0

-H

0

Q(H

1

- �E)

1

W

0

-H

0

QH

1

j�

0

i

-h�

0

jH

1

1

W

0

-H

0

Q(H

1

- �E)

1

W

0

-H

0

Q�Ej�

0

i

= h�

0

jH

1

1

W

0

-H

0

Q(H

1

- �E)

1

W

0

- E

0

1

X

n=1

j�

n

ih�

n

jH

1

j�

0

i

=

1

X

n=1

h�

0

jH

1

1

W

0

-H

0

Q(H

1

- �E)

1

W

0

-W

n

j�

n

ih�

n

jH

1

j�

n

i

=

1

X

n=1

1

W

0

-W

n

h�

0

jH

1

1

W

0

-H

0

QH

1

j�

n

ih�

n

jH

1

j�

0

i

-�E

1

X

n=1

h�

0

jH

1

1

(W

0

-W

n

)

2

j�

n

ih�

n

jH

1

j�

0

i

=

1

X

n=1

1

W

0

-W

n

h�

0

jH

1

1

W

0

-H

0

1

X

m=1

j�

m

ih�

m

jH

1

j�

n

ih�

n

jH

1

j�

0

i

-�E

1

X

n=1

h�

0

jH

1

1

(W

0

-W

n

)

2

j�

n

ih�

n

jH

1

j�

0

i

=

1

X

n=1

1

X

m=1

h�

0

jH

1

j�

m

ih�

m

jH

1

j�

n

ih�

n

jH

1

j�

0

i

(W

0

-W

n

)(W

0

-W

m

)

-�E

1

X

n=1

h�

0

jH

1

j�

n

ih�

n

jH

1

j�

n

i

(W

0

-W

n

)

2

(B.24)

whi
h 
onsists of a term of order � �

3

and a term whi
h 
ontains all orders of � �

3

or greater. Taking the terms by order in � the perturbation series for the energy

is

�E

(1)

= h�

0

jH

1

j�

0

i

�E

(2)

=

1

X

n=1

h�

0

jH

1

j�

n

ih�

n

jH

1

j�

0

i

W

0

-W

n
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�E

(3)

=

1

X

n=1

1

X

m=1

h�

0

jH

1

j�

m

ih�

m

jH

1

j�

n

ih�

n

jH

1

j�

0

i

(W

0

-W

n

)(W

0

-W

m

)

-h�

0

jH

1

j�

0

i

1

X

n=1

h�

0

jH

1

j�

n

ih�

n

jH

1

j�

0

i

(W

0

-W

n

)

2

: (B.25)

The �rst order energy 
orre
tion is zero for the present 
ase, sin
e the perturbation

is a normal-ordered produ
t of operators whi
h de�ne the ground state in whi
h

their expe
tation value is being taken.

The se
ond order 
orre
tion to the energy is 
ommonly obtained by 
reating a

�
titious time-dependent problem in whi
h the intera
tion H

1

is turned on adia-

bati
ally so that the full solution is obtained at t = 0. This approa
h is detailed in

the textbooks[35, 39℄. An alternative approa
h is to make use of the algebra of

se
ond quantization. The se
ond order energy is

�E

(2)

=

1

X

n=1

h�

0

jH

1

j�

0

ih�

n

jH

1

j�

n

i

W

0

-W

n

=

1

X

n=1

jh�

0

jH

1

j�

n

ij

2

W

0

-W

n

(B.26)

The state j�

n

i must be of the form a

y

r

a

y

s

a

a

a

b

j�

0

i, i.e. a state with two parti
les

ex
ited from the HF ground state so that the matrix element h�

0

jH

1

j�

n

i is non-

zero, H

1


ontaining two a-
reation and two a-annihilation operators. To avoid

double 
ounting, the 
ondtitions

s > r > �

F

a < b � �

F

apply. The eigenvalue of the unperturbed Hamiltonian of the ex
ited state j�

n

i

whi
h appears in the denominator as W

n

is

W

n

= W

0

+ �

r

+ �

s

- �

a

- �

b

; (B.27)

so that the se
ond order energy 
orre
tion is

�E

(2)

=

X

a<b��

F

X

r>s>�

F

�

�

�h�

0

jH

1

a

y

r

a

y

s

a

a

a

b

j�

0

i

�

�

�

2

�

a

+ �

b

- �

r

- �

s

: (B.28)

To evaluate the matrix elements a new set of 
reation and annihilation operators

is de�ned whose a
tion on the true va
uum j

~

0i is the same as the of the a operators

on the Hartree-Fo
k ground state j�

0

i:

a

y

a

j�

0

i =

�




y

a

j

~

0i; a > �

F




a

j

~

0i; a < �

F

a

a

j�

0

i =

�




a

j

~

0i; a > �

F




y

a

j

~

0i; a < �

F
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so that the matrix element, with the normal-ordered produ
t of operators is (see

(B.10))

1

4

X

��
Æ

h��j~vj
Æih�

0

j : a

y

�

a

y

�

a

Æ

a




: 


y

r




y

s




y

a




y

b

j

~

0i (B.29)

The matrix element will be non-zero if when translating the bra side to the 


representation, four 
-annihilation operators are produ
ed. This means that �

and � must be hole states in the HF representation and 
 and Æ must be parti
le

states:

1

4

X

����

F

X


Æ>�

F

h��j~vj
Æih

~

0j


�




�




Æ










y

r




y

s




y

a




y

b

j

~

0i (B.30)

Sin
e � and � are hole states and a and b are hole states, and the other operators

pertain to parti
le states, the matrix element of the 
-operators 
an be separated

as

h

~

0j


�




�




y

a




y

b

j

~

0ih

~

0j


Æ










y

r




y

s

j

~

0i (B.31)

The �st matrix element here will be unity if b = � and a = � or -1 if a = � and

b = �. This 
an be written as a generalized antisymmetri
 delta fun
tion:

h

~

0j


�




�




y

a




y

b

j

~

0i = Æ

ab

��

�

�

�

�

�

�

Æ

�a

Æ

�b

Æ

�a

Æ

�b

�

�

�

�

�

= Æ

�a

Æ

�b

- Æ

�b

Æ

�a

(B.32)

so that the matrix element (B.30) be
omes

h�

0

jH

1

a

y

r

a

y

s

a

a

a

b

j�

0

i =

1

4

X

��
Æ

h��j~vj
ÆiÆ

ab

��

Æ

rs


Æ

= -habj~vjrsi: (B.33)

Hen
e the se
ond order energy 
orre
tion is

�E

(2)

=

X

a<b��

F

X

r>s>�

F

jhabj~vjrsij

2

�

a

+ �

b

- �

r

- �

s

: (B.34)

Note that the numerator is always positive de�nite and the denominator is neg-

ative, so the se
ond order energy 
orre
tion always lowers the total energy from

that of the Hartree-Fo
k result. It is often 
onvenient to remove the restri
tions

a < b and r > s. For ea
h removal one doubles the set of states being summed

over, so an extra fa
tor of 1=2 is needed. The extra restri
tions a 6= b and r 6= s are

taken 
are of sin
e the pairs of labels appear together in a bra or a ket and also

in the energy denominator, although this is only true for se
ond and third order

diagrams. The se
ond order energy then may be written

�E

(2)

=

1

4

X

ab��

F

X

rs>�

F

jhabj~vjrsij

2

�

a

+ �

b

- �

r

- �

s

: (B.35)
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A dimensionless quantity related to the se
ond order energy 
orre
tion is the so-


alled \wound integral", �[101℄, de�ned by

� =

1

4

X

ab��

F

X

rs>�

F

jhabj~vjrsij

2

j�

a

+ �

b

- �

r

- �

s

j

2

: (B.36)

It is always positive and represents the number of parti
les in the wavefun
tion

whi
h are not in the ground-state Slater determinant.

This same pro
edure 
an be used for evaluation of higher order energy 
or-

re
tions and wavefun
tion 
orre
tions[54℄. A more 
onvenient method has been

developed for the purposes of writing down the expressions for perturbation the-

ory whi
h is dealt with in the next Appendix.



Appendix C

Hugenholz Diagrams

C.1 Introdu
tion

In 1949 Feynman found that perturbation series en
ountered in �eld theory


ould 
onveniently be represented diagramati
ally[102℄. Following this lead,

Goldstone[103℄ and Hugenholz[61℄ both used similar diagrammati
 te
hniques

in the treatment of many-fermion perturbation theory. Either set of diagrams

may be used to 
al
ulate observables, but in this work the Hugenholz diagrams

are used sin
e for a given order of perturbation theory there are fewer diagrams

to write down. The diagrammati
 series for the ground state energy 
al
ulation is

presented here.

C.2 Unlabelled Diagrams

For a given order, N, of perturbation theory, one draws N verti
ally ordered dots

and then 
onne
ts them up with lines in all possible ways subje
t to the following


onditions:

� Ea
h dot has four lines emanating from it

� Ea
h diagram is topologi
ally distin
t

� Ea
h diagram is linked

� No line 
onne
ts a dot with itself

The �rst requirement is a 
onsequen
e of the perturbation term 
onsisting of a

two-body intera
tion. The se
ond 
onditions ensures that diagrams are 
ounted

only on
e. The third is a 
onsequen
e of the linked-
luster theorem whi
h shows

that if a diagram 
onsists of dis
onne
ted parts then ea
h part will already have

been in
luded in lower order diagrams and should not be in
luded again. The �nal

102
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ondition is a 
onsequen
e of Brillouin's theorem and results from using the HF

basis as the referen
e state for perturbation theory.

Using these rules one 
an see that there is only one possible se
ond-order

diagram, shown in Fig C.1. There is also only one unlabelled third order diagram

(Fig C.2) but there are 12 unlabelled fourth order diagram, shown in Figure C.3.

�

Figure C.1: Unlabelled se
ond-order Hugenholz diagram

�

Figure C.2: Unlabelled third-order Hugenholz diagram

As one goes up in order of perturbation theory, the number of unlabelled

Hugenholz diagrams to be 
al
ulated in
reases rather dramati
ally. Following the

rules given in this se
tion, one 
an develop an algorithm to 
ount the number of

diagrams in ea
h order. This has been done by the author for unlabelled diagrams.

Table C.1 shows these numbers. The large number of diagrams for higher orders

suggests that expli
it diagram-by-diagram evaluation of the perturbation theory

will be impra
ti
al for systems in whi
h the series has not suÆ
iently 
onverged

by the fourth, or perhaps �fth order.

Order 2 3 4 5 6 7

Unlabelled Diagrams 1 1 12 148 3150 90075

Table C.1: Number of Hugenholz diagrams by order of perturbation theory

C.3 Labelled diagrams

On
e one has an unlabelled diagram, ea
h of the lines needs to be labelled before

it 
an be evaluated. Labelling 
onsists of putting an arrow on ea
h of the lines

either pointing up or down subje
t to the following rules:
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� � � �

� � � �

� � � �

Figure C.3: Unlabelled fourth-order Hugenholz diagrams

� Ea
h dot has two lines entering it and two leaving it.

� Ea
h diagram is topologi
ally unique.

An up-pointing arrow represents a parti
le state, whi
h is to say a parti
le existing

in an orbital uno

upied in the referen
e state. A down-pointing arrow represents

a hole state, whi
h is the absen
e of a parti
le in a state whi
h is o

upied in

the referen
e state. Ea
h unlabelled diagram may have more than one labelled

representation. In the 
ase of the se
ond order there is only one, whi
h is shown

in Figure C.4.

�

rs

b

a

Figure C.4: Labelled se
ond-order Hugenholz diagram

In third order, there are three distin
t ways of labelling the unlabelled diagram,

shown in Figure C.5



APPENDIX C. HUGENHOLZ DIAGRAMS 105

�

a

b

r s




d

�

r s

t

u

a

b

�

r

s

a

t

b




Figure C.5: Labelled third-order Hugenholz diagrams

The pres
ription for writing down the mathemati
al form of the energy 
ontri-

bution from ea
h graph is as follows:

� For ea
h dot, write down a fa
tor of an antisymmetri
matrix element of the

intera
tion in the form h label-in-1 label-in-2j

~

Vj label-out-1 label-out-2i. The

ordering of the two \in" and \out" labels is not important here, although it

will a�e
t a phase later on.

Between ea
h su

essive pairs of dot, draw an imaginary horizontal line

and for ea
h su
h line 
ontribute a fa
tor in the denominator of (

P

�

holes

-

P

�

parti
les

).

�� Sum ea
h hole label over all o

upied HF states, and ea
h parti
le label over

uno

upied states.

� Multiply by a fa
tor 1=2

k

where k is the number of equivalent pairs of lines

in the diagram. An equivalent pair is a pair of lines starting and ending at

the same dot, and pointing in the same dire
tion.

� In
lude a phase (-1)

h+l

where h is the number of hole lines and l is the

number of 
losed loops. A pres
ription for 
al
ulating the number of 
losed

loops appears below.

C.4 Se
ond-order Energy Corre
tion

Using the above rules, the expression for the se
ond order ground state energy


orre
tion, given in expression (C.4), 
an be written down as

�E

(2)

=

1

2

2

(-1)

2+l

X

ab��

F

X

rs>�

F

habj

~

Vjrsihrsj

~

Vjabi

�

a

+ �

b

- �

r

- �

s

: (C.1)

To determine the number of 
losed loops, one writes down the series of matrix

elements in this expression and starting with the �rst one follows through all the

labels whi
h appear in the same position on the other side of the matrix element

until one arrives ba
k at the starting label. If any labels are not in
luded in the �rst
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path, one starts on su
h a label and 
ontinues until all labels have been in
luded.

The number of separate paths is then the number of 
losed loops.

In the above 
ase, the matrix elements are

habj

~

Vjrsihrsj

~

Vjabi;

so starting at a in the �rst matrix element, one pro
eeds:

habj

~

Vjrsihrsj

~

Vjabi; (C.2)

whi
h is one 
losed loop a ! r ! a. Starting from the �rst \unused" label, b,

another loop exhausts the rest of the labels b! s! b:

habj

~

Vjrsihrsj

~

Vjabi; (C.3)

so in this 
ase l = 2 and the expression for the se
ond order energy 
orre
tion is

�E

(2)

=

1

4

X

ab��

F

X

rs>�

F

habj

~

Vjrsihrsj

~

Vjabi

�

a

+ �

b

- �

r

- �

s

: (C.4)

This is exa
tly the same as the expression (B.35) derived in the previous Appendix.

C.5 Third-order Energy Corre
tion

C.5.1 Hole-hole S
attering term

The �rst diagram in Fig (C.5) is 
alled the hole-hole s
attering term sin
e the

matrix element asso
iated with the middle dot has a hole-hole state both as the

initial and the �nal state. Following the rules to write down its expression gives

E

(3)

hh

=

1

8

X

a 6=b��

F

X


6=d��

F

X

r6=s>�

F

(-1)

4+l

habj

~

Vjrsih
dj

~

Vjabihrsj

~

Vj
di

(�

a

+ �

b

- �

r

- �

s

)(�




+ �

d

- �

r

- �

s

)

(C.5)

The number of 
losed loops is evaluated as:

habj

~

Vjrsih
dj

~

Vjabihrsj

~

Vj
di

1 23

(C.6)

where the numbers indi
ate the order in whi
h the arrows operate to form the

loop a! r! 
! a. A se
ond loop exhausts the labels b! s! d! b,

habj

~

Vjrsih
dj

~

Vjabihrsj

~

Vj
di

1 23

(C.7)

so that l = 2 and the sign of the term is positive.
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C.5.2 Parti
le-Parti
le S
attering term

Following the same pro
edure for writing down the expression and 
ounting the

number of 
losed loops, the se
ond diagram in Figure C.5 is

E

(3)

pp

=

1

8

X

a 6=b��

F

X

r6=s>�

F

X

t6=u>�

F

habj

~

Vjrsihrsj

~

Vjtuihtuj

~

Vjabi

(�

a

+ �

b

- �

r

- �

s

)(�

a

+ �

b

- �

t

- �

u

)

(C.8)

C.5.3 Parti
le-Hole S
attering term

The �nal diagram in Figure C.5 is

E

(3)

ph

=

X

a 6=b6=
��

F

X

r6=s 6=t>�

F

habj

~

Vjrsih
rj

~

Vjatihstj

~

Vj
bi

(�

a

+ �

b

- �

r

- �

s

)(�

b

+ �




- �

s

- �

t

)

: (C.9)

Note that there is no fa
tor of 1=8 here sin
e there are no \equivalent pairs".



Appendix D

Harmoni
 Os
illator Basis

D.1 Un
oupled representation

The HF wavefun
tions are de�ned by their expansion 
oeÆ
ients in a spheri
al

harmoni
 os
illator basis. The harmoni
 os
illator wavefun
tions are separated

into radial and angular parts:

�

njl

(r) = R

nl

(r)Y

lm

l

(�;�); (D.1)

and are the solution of the S
hr �odinger equation

-

�h

2

2m

r

2

�

a

(r) -

1

2

m!

2

r

2

�

a

(r) = e

(nljm)

a

�

a

(r): (D.2)

With spheri
al symmetry assumed the angular parts of the wavefun
tion are sper-

i
al harmoni
s. The radial equation is analyti
ally solvable to give

R

nl

(r) =

v

u

u

t

2

l-n+1

(2n+ 2l+ 3)!!

b

3

p

� f(2l+ 1)!!g

2

r

l

L

n;l+1=2

(r

2

=b

2

)e

-

r

2

2b

2

; (D.3)

where

b =

s

�h

m!

(D.4)

is the os
illator size parameter, and L

n;l+1=2

is an asso
iated Laguerre polynomial.

The ground state of the radial fun
tion is that whi
h has n = 0. The full os
illator

wavefun
tions (D.1) are orthonormal and form a 
omplete set. The orthogonal-

ity in the angular 
oordinates and quantum numbers 
omes from the spheri
al

harmoni
s:

Z

�

0

sin � d�

Z

2�

0

d�Y

�

lm

l

(�;�)Y

l

0

m

0

(�;�) = Æ

ll

0

Æ

mm

0

(D.5)

and in the radial fun
tion

Z

dr r

2

R

nl

(r)R

n

0

l

(r) = Æ

nn

0

: (D.6)
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D.2 Coupled representation

Sin
e the eigenstates of the single parti
le Hamiltonian are eigenstates of the total

angular momentum operator j

2

and not the orbital angular momentum operator

l

2

it is useful to 
onstru
t harmoni
 os
illator wavefun
tions whi
h share these

symmetries. This is a
hieved by 
oupling the spheri
al harmoni
 to a spinor to

give a spinor spheri
al harmoni
:

Y

ljm

(�;�; �) =

h

Y

lm

l

(�;�)
 �

1=2

m

s

i

j

m

; (D.7)

where them without a subs
ript is the magenti
 quantum number asso
iated with

the 
oupled angular momentum, and the symbol 
 represents a tensor 
oupling.

Expli
itly this may be written as

Y

ljm

(�;�; �) =

X

m

l

m

s

hlm

l

1=2m

s

jjmiY

lm

l

(�;�)�

1=2

m

s

(D.8)

where hlm

l

1=2m

s

jjmi is a Clebs
h-Gordan 
oeÆ
ient.

The orthogonality relations are, in the 
oupled 
ase, the same for the radial

quantum number and, for the angular quantum numbers:

Z

d�

Z

�

0

sin � d�

Z

2�

0

d�Y

�

ljm

(�;�; �)Y

l

0

j

0

m

0

(�;�; �) = Æ

ll

0

Æ

jj

0

Æ

mm

0

(D.9)

D.3 Radial Derivatives

The radial derivative of a harmoni
 os
illator eigenfun
tion is quite simple sin
e

the derivatives of Laguerre polynomials are also Laguerre polynomials:

dL

n;l+1=2

(r

2

)

dr

= L

n-1;l+3=2

(r

2

) (D.10)

so that the derivative of the whole radial eigenfun
tion is

dR

nl

(x)

dx

= N

 

lr

l-1

L

n;l+1=2

(r

2

=b

2

)e

-

r

2

2b

2

+ r

l

 

2r

b

2

!

L

n-1;l+3=2

(r

2

=b

2

)e

-

r

2

2b

2

-r

l

L

n;l+1=2

(r

2

=b

2

)

�

r

b

2

�

e

-

x

2

2b

2

!

; (D.11)

where N is the same normalization fa
tor as in Equation (D.3).Thus any fun
tion

of the density or its derivatives may be evaluated exa
tly in terms of the harmoni


os
illator states.



Appendix E

Hartree{Fo
k Potential for the

Separable For
e.

This appendix 
ontains derivations of the Hartree{Fo
k energy, potential and ma-

trix elements for all the terms of the nu
lear for
e used in the work.

The Hartree{Fo
k potential is obtained from a variation of the HF energy as

detailed in Appendix A.

E.1 Variational prin
iple

The normal fun
tional variation is employed, viz.

Z

dx

X

a

Æ'

�

a

(r)

Æ'

�

b

(x)

=

Z

dx

X

a

Æ

3

(r- x)Æ

ab

(E.1)

where a and b label all the good quantum numbers of a single parti
le state

(N; l; j;m; �) and x and r are the three-dimensional spatial 
oordinates plus spin

and isospin 
oordinates. The wave fun
tions, ' are the full single parti
le wave

fun
tions, in
luding radial and angular parts, as well as a spinor and an isospinor

The integral over x is really an integral over the 
ontinuous 
oordinates and a sum-

mation over the dis
rete ones and the Dira
 delta in
ludes a Krone
ker delta for

these 
oordinates. For most terms in the derivation whi
h follows, this notation

suÆ
es and it is not ne
essary to break the wave fun
tions ' up into their sepa-

rate parts. However, for the terms whi
h in
lude spatial derivative operators, it is

ne
essary to 
onsider a variation a
ting only using theR part of the wave fun
tion.

This is possible to do due to the assumed symmetries of the HF wave fun
tions

and the fa
t that only nu
lei with 
ompletely full j-sub-shells are 
onsidered.

The appropriate variational prin
iple is

X

a

Z

dx

ÆR

�

a

(r)

ÆR

b

(x)

=

X

a

Z

dx

1

x

2

Æ(r- x)

1

2j

a

+ 1

Æ

ab

: (E.2)
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Here, the 
oordinates r and x are just the one-dimensional spatial 
oordinates. To

show that this is true, one 
an 
onsider a simple potential, whi
h is just a 
onstant,

V(r

1

; r

2

) = k. Then the energy from this potential is

E = k

 

Z

dr�(r)

!

2

:

A single variation of whi
h gives

ÆE

ÆX

= k

Z

dr�(r) �

Z

dr

Æ�(r)

ÆX

= kA

Z

dr

Æ�(r)

ÆX

:

Then 
hoosing X = '

�

b

(x):

Z

d

3

r

Æ�(r)
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�

b

(x)

=

Z

d

3

r

X

i<�

F

'

�

i

(r)'

i

(r)

Æ'

�
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=

Z

d

3

r

X

i<�

F

'

i

(r)Æ

3

(r- x)Æ

ib

= '

b

(x) (E.3)

or X = R

�

b

(x):

Z

d

3

r

Æ�(r)

ÆR

�

b

(x)

=

Z

d

3

r

X

i<�

F

R(r)

�

i

R(r)

i
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�

i
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i

�
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i

�

i

ÆR

�
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Z
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2

d

1

r

X

N

i

:i<�

F

(2j

i

+ 1)Æ

ib

Æ

1

(r- x)R

i

(x)

= x

2

(2j

b

+ 1)R

b

(x) (E.4)

where the dimensions of ea
h spatial integration and delta fun
tion have been

made expli
it. The two methods of variation then result in the same one-

dimensional HF potentials if the relation (E.2) is used. Of 
ourse, in the �rst 
ase

one has still to perform the angular and dimensional redu
tion, whi
h a

ounts

for these fa
tors.

E.2 Hartree-Fo
k Energy

E.2.1 Monopole term

The monopole intera
tion is written in 
oordinate spa
e as

V(r

1
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2

) = W
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�
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l � s: (E.5)



APPENDIX E. HARTREE{FOCK POTENTIAL FOR THE SEPARABLE FORCE. 112

The physi
al interpretation of these terms is dis
ussed in Chapter 3.

Sin
e the �rst two terms of the for
e are fun
tionally identi
al terms, it will

suÆ
e to go through the derivation for just one term. In what follows only the

expressions for the attra
tive part of the potential, with subs
ript a, will be de-

rived.

The energy 
ontribution from this two-body for
e 
an be written

E =

1

2

X

ij<�

f

hijjV (jiji- jjii) (E.6)

Central term

The energy 
ontribution from the \
entral term", whi
h is de�ned as that part of

the attra
tive for
e with no isospin operator, is
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�
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The dire
t term in Equation (E.7) may be written
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where the total density has been de�ned as the sum of the proton and neutron

densities as
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We de�neN

�

r

similarly for the repulsive term parameters. The ex
hange term 
an-

not be simpli�ed in terms of the one-body density. It may, however be expressed

in terms of the nonlo
al density, whi
h for nu
leon spe
ies q is
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and a total nonlo
al density �(r
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where the spa
e part of the ex
hange integral has been de�ned as
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with a similar de�nition forM

�

r

, with the parameter �

r

.

Isospin-dependent term

To 
al
ulate the energy due to the isospin-dependent term of the monopole inter-

a
tion, one needs to examine the properties of the isospin operators on the four

possible 
ombinations of un
oupled 2-body isospinors. We represent a proton

state by the letter p and a neutron state by the letter n:
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where � may represent either a neutron or a proton, and �� represents the other

nu
leon spe
ies. To arrive at an expression for the 
ontribution to the energy from

this term, the sum is split into terms with �
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= �

j

and �
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. Firstly the dire
t

term:
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where the fun
tion, N
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and �
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(r) is the nu
lear density for a parti
ular spe
ies of nu
leon. There is also a


ontribution from the terms with �
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so that the total energy 
ontribution from these terms is
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in whi
h the fun
tion
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is de�ned. The ex
hange term is also 
al
ulated by splitting it into two sums. For
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, the 
ontribution to the ex
hange energy is
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so that the total energy 
ontribution due to the ex
hange term of the isospin-

dependent part of the for
e is
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Derivative term

The energy due to the dire
t part of this term is
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where N
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The ex
hange term 
an be written
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We may de�ne the 6-dimension integral to be M

d

in analogy with the other ex-


hange integrals.

Spin-orbit term

To evaluate the energy 
ontribution from the spin-orbit term, it is noted that
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l � ŝ (E.26)
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and the a
t of this operator on a single parti
le state is
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l � ŝjii =

1

2

 

j

i

(j

i

+ 1) - l

i

(l

i

+ 1) -

3

4

!

jii (E.28)

This eigenvalue, w

i

, is abbreviated for brevity as,
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The spin-orbit energy, then, 
an be written:
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where the \weighted density" is de�ned as
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and N

w

to be the integral in the above expression. In summary, the 
omplete

expression of the energy due to the monopole and spin-orbit terms may be written

as
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Higher Multipole terms

The energy due to the dipole or quadrupole intera
tions may be written
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The dire
t 
ontribution to the HF energy for a spheri
al nu
leus in whi
h ea
h

shell is �lled is zero. To show this one notes that the for
e is separable so that the

sums over i and j 
an be 
onsidered separately. Looking just at the angular part

of the sum over i (whi
h subs
ript 
an be dropped without 
onfusion), one has
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so for the values of � of interest, i.e. 1 and 2, there is no dire
t 
ontribution

to the Hartree-Fo
k energy. The ex
hange term is just evaluated dire
tly from

expression (E.33).
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E.2.2 Hartree{Fo
k Potential

To determine the one-body Hartree{Fo
k potential, the variational prin
iple is

used, as des
ribed at the beginning of this Appendix, to minimize the energy. The


ontributions from the various terms in the energy are as follows:

Central Term

The variation of the dire
t part gives us
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The variation of f
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so that the �rst term in (E.35) is
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giving a 
ontribution to the HF mean{�eld of
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Here U(x) denotes the parti
ular 
ontribution to the HF potential, and the same

fun
tion will be used throughout this derivation to denote other 
ontributions. In

the end U(x) will be used to mean the sum of all the 
ontributions together.

The se
ond term in (E.35) is
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whi
h gives a 
ontribution to the Hartree{Fo
k potential of
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Now is performed the variation of the ex
hange energy:
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The �rst term involves the variation of f

�

a

as with the dire
t part, and the 
ontri-

bution to the (lo
al) Hartree{Fo
k potential 
an be written down as
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Variation of the fun
tion M
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is as follows:
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By relabelling of indi
es and 
oordinates, the �rst and se
ond terms are seen to

be equal, as are the third and fourth terms. This variation then be
omes:
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The �rst term 
ontributes to a nonlo
al Hartree{Fo
k potential:
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and the other term 
ontributes to the lo
al Hartree{Fo
k potential:
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Isospin-dependent term

The fun
tional variation of the energy whi
h 
omes from the dire
t part of the

isospin-dependent term (E.18) is

ÆE

�;dire
t

Æ'

�

b

(x)

=

1

2

Vb

a

Æf

�

a

Æ'

�

b

(x)

(�N

�

a

)

2

+W

a

b

a

f

�

a

(�N

�

a

)

Æ(�N

�

a

)

Æ'

�

b

(x)

= -W

a

�

a

b

a

[f

�

a

�N

�

a

℄

2

�

�

a

-1

(x)'

b

(x)

+ W

a

b

a

f

�

a

(�N

�

a

)

h

�

a

�

�

a

-1

(x) (�

p

(x) - �

n

(x))'

b

(x)

+ �

�

a

(x)

�

'

(p)

b

(x) - '

(n)

b

(x)

� i

(E.48)

The �rst term 
ontributes the following to the Hartree{Fo
k potential:
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From the variation of �N

�

a

there is a 
ontribution whi
h applies equally to the

proton and neutron Hartree{Fo
k potential:
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where Æ�(x) = �

p

(x) - �
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(x). There is also a 
ontribution whi
h depends on the

nu
leon spe
ies. The 
ontribution to the proton potential is
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and the 
ontribution to the neutron potential is
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De�ne a quantity �
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, whi
h equals �N
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a

for � = p and is -�N
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for � = n,

one 
an write the 
ontribution in a uni�ed term;
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The variation of the ex
hange term is
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The variation of f

�

a

pro
eeds as before, giving rise to a 
ontribution to the lo
al

Hartree{Fo
k potential of
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The varation of the ex
hange integrals, M

(��)

�

a

and M

(� ��)

�

a

, is rather 
ompli
ated.

Firstly, let's look at M

(��)

�

a

. It 
onsists of a sum of two terms whi
h di�er only by

the isospin index. Let us then 
onsider the 
ase where the index labels proton

states. The result for the neutron states will be identi
al in form.
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Here, the �rst two terms are equal (with suitable relabelling of indi
es), as are the

third and fourth terms. The expression simpli�es to:
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Note that in the se
ond term, the index b in
ludes both proton and neutron states.

The �rst term gives rise to a non-lo
al potential whi
h a
ts on protons only:
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and the se
ond term gives a 
ontribution to the lo
al Hartree{Fo
k potential, of

both protons and neutrons, of
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Repla
ing the proton label everywhere by a neutron label gives a non-lo
al neutron

potential
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and a 
ontribution to the one-body potential whi
h applies to both nu
leon spe
ies

of
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This leaves just the ex
hange terms where the isospins of states i and j di�er:
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The �rst term gives rise to a nonlo
al potential, a
ting only on proton states:

U

p

(x; x

0

) =

1

2

W

a

a

a

f

�

a

�

n

(x; x

0

)�

�

a

(x)�

�

a

(x

0

)'

b

(x

0

) (E.63)

The next term produ
es a nonlo
al neutron potential:
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The terms arising from the variation of the density apply both to neutron and

proton states. The third term gives a lo
al HF potential of
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The fourth term di�ers from the third only by the ex
hanging of labels p$ n.

Derivative Term

The variation of the dire
t energy of the derivative term gives
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The �rst terms is simply evaluated as

= kN
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so that it gives a 
ontribution to the HF potential of

U(x) = kN
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Sin
e the density depends only on the radial 
oordinate, the operation of the lapla-


ian on the density is
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Then the variation of the se
ond term, with partial derivatives with respe
t to the


oordinate r, is best 
arried out by expli
itly varying just the radial fun
tion. The

variation of this term is
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Integrating on
e by parts gives
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and on
e more {
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so this also gives a 
ontribution to the HF potential of

U(x) = kN

d

r

2

�(x): (E.74)

The ex
hange potential in this 
ase is rather 
ompli
ated and 
onsists of 
al
ulating

the a
tion of the Lapla
ian on the density matri
es. A simple approximation whi
h


an be made is to repla
e the density matri
es with the lo
al one-body density:
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In the 
ase that f(r

1

; r

2

) = 1 the repla
ement is an identity. For simpli
ity 
onsider

that the densities are of a single nu
leon spe
ies, q
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and
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For other values of f(r

1

; r

2

) the repla
ement is an approximation. However, in


ases where the ex
hange terms are dire
tly 
al
ulable it is shown to be a good one

and its use here should be 
onsidered better than ignoring the term 
ompletely.

The ex
hange energy, then, is
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The variation of the �rst � gives simply a dire
t 
ontribution to the HF potential:

U(x) = -

1
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k
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: (E.79)

The variation of the potential (the rearrangement term) pro
eeds:
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In 
al
ulating the dire
t term it was shown that the a
tion of the variational op-

erator on a Lapla
ian was to move the Lapla
ian to a
t on the parts of the integral

not subje
t to the variation. This would lead to a term of the form

� r

2

(�(r)r

2

�(r)) (E.81)

whi
h in
ludes 
al
ulating fourth derivatives of the density, whi
h is too 
umber-

some to be 
onsidered an worthwhile approximation. If one returns to the full

expression for the ex
hange energy and varies the potential in the matrix element

to look at the rearrangement term, one has

-k
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Here the fa
tor of 1=2 has been dropped sin
e there is also an identi
al term with

the variational operator a
ting on the term of the potential in r

2

. Sin
e the Lapla-


ian being varied only operates on r

1

, when it is taken to a
t on all the terms not

being varied, it does not then a
t on r

2

2

�(r

2

), but only on those parts dependent

on r

1

{ the density matrixes. At this stage the approximation may be applied to

give
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where the approximation is taken with some 
aution sin
e the fun
ton f(r

1

; r

2

)


ontains derivative operators and delta fun
tions. In any 
ase the result here is
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the same magnitude as with the safer invo
ation of the approximation above. It's

numeri
al value in a
tual 
al
ulations, like the ex
hange terms elsewhere, is rather

smaller than the dire
t term. This being so, the term may be negle
ted. If it is

not, the entire 
ontribution from the ex
hange part of the derivative term to the

HF potential is approximated as

U(x) = -
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(E.84)

Spin-Orbit Term

The spin-orbit energy is
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whi
h may be varied with respe
t to the radial wavefun
tion as
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Using the variational prin
iple for the radial wavefun
tions (E.2), the se
ond term

is just
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whi
h gives rise to a state-dependent potential
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The �rst term requires an integration by parts:
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so that the total HF potential arising from the spin-orbit for
e is
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The potential is �nite at the origin sin
e �

w

(x) disappears at x = 0 due to the fa
t

that the weightw is zero for s-states, and the derivatives of the densities disappear

also at x = 0 sin
e the densities must be 
at at the origin to ensure that it varies

smoothly.

Colle
ted Terms

Bringing all the terms together, the Lo
al Hartree-Fo
k Potential due to the

monopole intera
tion is
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and the nonlo
al Hartree{Fo
k potential is
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In addition there is a 
ontribution to the lo
al HF potential whi
h depends upon

the state on whi
h it is a
ting:
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Appendix F

Perturbation Terms for Separable For
e

F.1 Se
ond Order Energy Corre
tion

As shown in Appendix B the se
ond order 
orre
tion to the total energy is obtained

by evaluating the following sum:

E
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(F.1)

where the labels a, b, 
 and d denote all the quantum numbers labelling ea
h

state, viz. N, l, j, m and �, and ~v is the two-body intera
tion.

Sin
e the single-parti
le energies � are independent of the m quantum num-

bers, it is possible to sum the squared matrix elements over m to give a 
losed-

form expression. To do this, the matrix element is expanded as a sum of 
ontri-

butions from ea
h of the terms in the potential, then ea
h of the resulting terms

may have itsm numbers summed over. De�ning the greek letters �, �, � and � to

be the subset of quantum numbers � = fN; l; j; �g

a

, the sum (F.1) may be written
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where the Krone
ker delta symbols serve to restri
t m

a

6= m

b

when all the other

quantum numbers of parti
le a are the same as those of parti
le b and likewise

for parti
les r and s. In this way the summation over the quantum numbers may

is unrestri
ted. Looking at the terms whi
h do in
lude these delta symbols, it is

easy to show that they disappear. For instan
e, the term with Æ

��

Æ

m
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m

b

may be

simple summed over b = �;m
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to give
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whi
h is zero sin
e the antisymmetrized matrix element vanished when the two

states in the bra (or the ket) are the same.

For the present purposes the potential (3.1, 3.4, 3.5) may be expressed in a

way whi
h hides all the dependen
e on the quantum numbers N, l, j and � and

puts them in fun
tions F

M

, F

D

and F

Q

for the monopole, dipole and quadrupole

intera
tions respe
tively:
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Non-antisymmetrized matrix elements of ea
h of these terms are then
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The matrix element of a spheri
al harmoni
 between spinor spheri
al harmoni


states, in the 
ase of the 
oupling order l + 1=2 = j whi
h is used throught this

work, is [24℄
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where the shorthand notation

^

L = 2L+ 1 has been used. Here, the parts indepen-

dent of m (the redu
ed matrix elements) may be subsumed into fun
tions �

�

so

that
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Note also that the monopole for
e may be expressed in this form, too:
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sin
e the sum is just Æ
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. This means the monopole � is de�ned as �

����

M

=

Æ

l

a

l

r

Æ

j

a

j

r

Æ

l

b

l

s

Æ

j

b

j

s

. This being so, it is 
onvenient to 
onsider only a generalized

multipole form whi
h 
orresponds to the monopole, dipole and quadrupole terms

upon suitable substitution for a parameter � (0,1 or 2 respe
tively):
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Furthermore sin
e the F and � numbers always appear together with the same

super- and subs
ripts they may, to redu
e notational 
lutter, be rede�ned as one

number:
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The multipole operators are 
onstru
ted so as to be s
alar. To take advantage

of this, and also to verify it, the matrix elements may be evaluated by 
oupling

the two body states to good total angular momentum. An antisymmetrized matrix

element of given mutipole may be written
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(F.11)

This 
oupling was done to make the dependen
e of the matrix element on the

quantum numbers m

a

� � �m

s

as simple as possible so that they may be summed

out later in the expression for the energy 
orre
tion. It is possible at this stage to

greatly simplify the angular dependen
e still in the 
oupled matrix elements. To

begin, they are un
oupled again:
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This sum of four Clebs
h-Gordan 
oeÆ
ients over fourmagneti
 quantum numbers


an be redu
ed to a 9-j symbol and two Clebs
h-Gordan 
oeÆ
ients summed over

one angular momentum and its proje
tion. This gives for the matrix element
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:
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From the �rst Clebs
h-Gordan 
oeÆ
ient one immediately has the 
ondition � =

0 so that � may be summed out. Then this Clebs
h-Gordan 
oeÆ
ient may be

summed over �:

(-1)

�

X

�

(-1)

�-�

h���-�jk0i = (-1)

�

Æ

k0

q

^

�: (F.12)

Inserting this in the above expression and summing over k the matrix element

be
omes
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: (F.13)

The remaining Clebs
h-Gordan 
oeÆ
ient is Æ

JJ

0

Æ

MM

0

. This shows that the mul-

tipole operators are indeed s
alars. The 9-j symbol with a zero redu
es to a 6-j

symbol:
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thus the matrix element redu
es to
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The full antisymmetrized matrix element whi
h appears in the sum for the energy


orre
tion is thus
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(F.16)

In the expression (F.1) the sum over m

a

� � �m

s

of the square of these matrix

elements needs to be evaluated. All possible terms appearing here 
an be 
onsid-

ered by looking at two terms; habjV

�

jrsihabjV

�

0

jrsi and habjV

�

jrsihabjV

�

0

jsri. The

�rst 
ase is
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The quantum numbers m

a

and m

b

may be summed over the two Clebs
h-Gordan


oeÆ
ients in whi
h they appear to give Æ

JJ

0

Æ

MM

0

. Likewise m

r

and m

s

. Summing

over both M and M

0

then gives a fa
tor of (2J + 1). J

0

may be trivially summed

over thanks to the Krone
ker delta. This leaves one sum:
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:

Providing the triplets (j

a

; j

r

; �) and (j

b

; j

s

; �

0

) satisfy the triangle relation, the sum

over J redu
es to Æ

��

0

^

�

-1

[104℄. The 
ondition of satisfying the triangle relations

is seen to already be true due to the � fun
tions. The �nal answer for this term is

then
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: (F.17)

The Krone
ker delta in � and �

0

shows that there are no 
ross terms between

multipoles.

The other possible term is
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:

Again the four Clebs
h-Gordan 
oeÆ
ients sum out and M, M

0

and J

0

may be

summed over:

X

m

a

���m

s

habjV

�

jrsihabjV

�

jsri = (-1)

j

r

+j

s

|̂

a

|̂

b

~

F

����

�

~

F

����

�

0

�

X

J

^

J(-1)

J

�

j

s

j

r

J

j

a

j

b

�


�

j

r

j

s

J

j

a

j

b

�

0




:

This sum over two 6-j symbols 
an be redu
ed to a single 6-j symbol[104℄:
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(F.18)

so that the summed matrix elements are
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(F.19)

Now there is no Krone
ker delta in � and �

0

so that there may appear 
ross terms

of this form between multipoles.
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When expanding the squared matrix element in (F.1) over the six terms of V

(one dire
t and one ex
hange matrix element from ea
h of the three multipoles)

there are 7!=5!2! = 21 terms. Many of these 
an be 
ombined sin
e the sum over r

runs over exa
tly the same states as s so, for example, the summed dire
t � dire
t

term for a given multipole is the same as the summed ex
hange � ex
hange. Fur-

thermore it has been show that some terms are zero. In fa
t, of the 21 terms, just

9 remain. The �nal expression for the se
ond order energy 
orre
tion is obtained

by inserting the appropriate 
ombinations of � and �

0

in the above expression.

After simplifying the 
ases in whi
h one or more of �, �

0

and �

00

equals zero, the

result is:
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(F.20)

F.2 Third Order Energy Corre
tion

F.2.1 Hole-Hole S
attering term

The energy 
orre
tion due to the hole-hole-s
attering diagram is

E
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(F.21)

Again, sin
e the single parti
le energies are independent of m, the m quantum

numbers may be summed out of produ
t of matrix elements. As in the se
ond

order term, one must be 
areful to ex
lude terms in whi
h b = a or 
 = d. It is

seen, however, that these terms vanish so may be in
luded in the sum without

danger.

The produ
t of three antisymmetrized matrix elements expands to a sum of

8 terms of produ
ts of three non-antisymmetrized matrix elements. Using the

following fa
ts,

habjVjrsi = hbajVjsri

habjVjrsi = hrsjVjabi;
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one 
an show that these eight terms pair up into four terms. Furthermore, sin
e

these terms are summed over labels whi
h run over the same states as other labels

summed over, onemay swap pairs of these labels without a�e
ting the result. This

operation enables one to identify the four terms as really being two independent

terms. Going through this pro
ess, then, one 
an show that the above sum (F.21)


an be written
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i) : (F.22)

This involves two di�erent terms, ea
h of whi
h needs to be evaluated. Looking

at the �rst, with the possibility of a di�erent multipolarity for ea
h;
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:

As in the 
ase of the se
ond order 
orre
tion, the numbers m

a

� � �m

s

may be

summed over giving delta fun
tions in the J and M numbers, all of whi
h but

one J may be trivially summed, to give:
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:

This sum of three 6-j symbols is known[104℄ and gives for the sum of three matrix

elements;
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: (F.23)

The other term, after summing out the Clebs
h-Gordan CoeÆ
ients, is

-

X

m

a

���m

s

habjVjrsih
djVjabihrsjVjd
i=

~

F

����

�

~

F


Æ��

�

0

~

F

��Æ


�

00

|̂

r

|̂

s

q

|̂




|̂

d



APPENDIX F. PERTURBATION TERMS FOR SEPARABLE FORCE 134
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Now all that remains is to evaluate these 
ontributions for the possible values of

�, �

0

and �

00

whi
h arise. Sin
e ea
h of these numbers 
an take on three di�erent

values there are 3

3

= 27 di�erent terms to evaluate. By observing that the labels

a and b run over the same states and always appear together in the energy de-

nominator, they may be inter
hanged without e�e
t, likewise 
 and d, and r and

s. Then, 9 of the 27 terms may be identi�ed with another 9 to give 18 independent

terms. Of these, 7 vanish for the 'dire
t' term (F.23), but all are �nite in the ex-


hange term (F.24). For those terms in whi
h at least one of �, �

0

and �

00

is zero,

the 6- and 9-j symbols simplify. The full expression for the third order energy


orre
tion due the the h-h diagram is then
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� �

0

�

00

fa
tor

1 1 1 1

1 1 2 2

1 2 1 1

1 2 2 2

2 1 2 1

2 2 2 1

Table F.1: Terms missing from expression (F.25) for the third order hole-hole

energy 
orre
tion

Here the ellipsis represents the terms whi
h 
annot be redu
ed, i.e. those for

whi
h none of �, �

0

or �

00

are zero. These terms are shown in table F.1 and are

just the expressions (F.23) and (F.24) with the appropriate values of �, �

0

and �

00

and the fa
tor as indi
ated in the table.

F.2.2 Parti
le-Parti
le S
attering term

The energy 
orre
tion due to the parti
le-parti
le s
attering diagram is
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If one relabels this using a ! r, b ! s, r ! a, s ! b, t ! 
, u ! d, then the

matrix elements are exa
tly of the same form as the hole-hole expression, and the

labels pair up with others running over the same states in the same way as in the

hole-hole expression. The summation of the magneti
 quantum numbers in the

matrix elements may be 
arried out in exa
tly the same way. The expression for

the energy 
orre
tion is then

E

(3)

pp

=

1

2

X

�;���

F

X

�;�>�

F

X

��>�

F

1

(�

�

+ �

�

- �

�

- �

�

)(�

�

+ �

�

- �

�

- �

�

)

"

� � �

#

(F.27)

where the expression elided in the square bra
kets is just that for the hole-hole


ase with the transformation of labels as above.

F.2.3 Parti
le-Hole S
attering term

In the previous terms the fa
t that ea
h single parti
le state o

urred always with

the same partner in the two-parti
le state ve
tor greatly simpli�ed things. Spe
if-

i
ally it enabled one to 
ouple the two-body states to good J and then sum out



APPENDIX F. PERTURBATION TERMS FOR SEPARABLE FORCE 136

the Clebs
h-Gordan 
oeÆ
ients whi
h resulted in a trivial way. For the p-h term

the situation is somewhat di�erent. The energy 
orre
tion is
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Fortunately, the need to worry about the restri
tion on the sum is again obviated

by the fa
t that the matrix elements are antisymmetri
 and that for ea
h restri
tion

both labels involved appear somewhere together in a bra or a ket and also together

in the energy denominator. It is not until one attempts to 
al
ulate sele
ted fourth

order diagrams that this be
omes a diÆ
ult issue.

Fewer redu
tions 
an be made in the expansion of the produ
t of three anti-

symmetri
 matrix elements than in the previous 
ases. Only two pairs of the 8

may be identi�ed to give for the energy 
orre
tion:
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To evaluate the sum over the 6 m quantum numbers it is still easier to 
ouple

the bras and kets to good J rather than to attempt to sum 6 dependent Clebs
h-

Gordan symbols. For the �rst two terms of (F.29), the 
oupling of the matrix

elements gives:
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To perform this sum, one takes the �rst four Clebs
h-Gordan 
oeÆ
ients and sums

them over the magneti
 numbers whi
h appear twi
e:
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This result is then 
ombined with the remaining two Clebs
h-Gordan 
oeÆ
ients

and sums over magneti
 numbers
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Now the sums over the remaining m states are 
arried out to give for the sum

(F.30)
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Now the representation of the redu
ed matrix elements in terms of the 6-j symbols

(F.15) may be substituted. Looking �rst at the dire
t part of the one antisymmetri


matrix element, one has:
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The sum of three 6-j symbols and one 9-j symbol in this 
ase may be obtained in

steps. The sum over J

00

of a fa
tor, and one 6-j and one 9-j may be performed to

give two 6-j symbols. This leaves a sum over two indi
es of four 6-j symbols:
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Now J

0

, appearing in three of the 6-j symbols may be summed over to give a 9-j

symbol, leaving
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Finally the last sum, over J may be performed. The result is two 6-j symbols so

that the sum over m

a

� � �m

t

of the non-antisymmetrized matrix elements is
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The other 5 terms in (F.29) 
an be redu
ed in a similar manner. The results are:
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Now the expression (F.29) 
an be evaluated using the redu
ed sums over the m

quantum numbers. For ea
h of the six terms in (F.29) there are 27ways of labelling

�, �

0

and �

00

. This being the 
ase, that there are 27� 6 = 162 terms, they are not

expli
itely listed here. It is noted, however, that for any term in whi
h at least one

of�, �

0

and�

00

is zero, the 6-j symbols will simplify, and the terms, although more

numberous for the parti
le-hole 
orre
tion, are individually no more 
ompli
ated

than for the parti
le-parti
le or hole-hole terms.



Appendix G

Neutron Star Equation of State

To obtain the equation of state for the nu
lear matter region of a neutron star,

the energy density of the neutron, proton, ele
tron and muon (npe�) matter is

written as a sum of nu
leon and lepton 
ontributions[22℄:
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The matter is 
onsidered to be in equilibrium with respe
t to weak intera
tions:

n$ p+ e

-

$ p+ �

-

whi
h implies the 
onditions on the 
hemi
al potentials:
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(G.2)

where the 
hemi
al potential is de�ned as
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: (G.3)

A se
ond 
ondition arises from the fa
t that themattermust be ele
tri
ally neutral,

whi
h implies

n
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: (G.4)

For ea
h baryon number density fra
tions are de�ned as
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where n

b

= n

p

+n

n

is the number of baryons. Lepton fra
tions are 
onstrained by

the above 
onditions. Given these de�nitions and 
onditions, the EOS is given by

two expressions: The mass density
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and the pressure
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: (G.7)

By eliminating n

b

from these equations the EOS results giving pressure as a fun
-

tion of mass density of the matter.

From 6.30, the energy density of asymmetri
 matter 
an be rendered in the

notation of neutron star theory as
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or, as a fun
tion of n

b

and the baryon fra
tions as

e

N

(n

b

; Y

p

; Y

n

) = 


p

n

5=3

b

Y

5=3

p

+ 


n

n

5=3

b

Y

5=3

n

+

1

2

W

a

n

2�

a

-�

a

+2

b

+

1

2

W

r

n

2�

r

-�

r

+2

b

+

1

2

W

a

b

a

n

2�

a

-�

a

+2

b

(Y

n

- Y

p

)

2

+

1

2

W

r

b

r

n

2�

r

-�

r

+2

b

(Y

n

- Y

p

)

2

(G.9)

To simplify the 
al
ulation, the numbers 


p

and 


n

(whi
h are de�ned in Chapter 6)

are taken to be the same value, �, using an average nu
leon massm
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). The �rst two terms thus be
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This expression is then used to work out the 
hemi
al potentials:
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where E = E
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is the energy density per parti
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so the 
hemi
al potentials are
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and their di�eren
e is
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From the equilibrium 
ondition (G.2) one has
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The ele
tron 
hemi
al potential �

e


an be 
al
ulated as [106, 107℄
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The ele
tron fra
tion, Y

e

must be equal to the proton fra
tion to ensure 
harge

neutrality, at least belowmuon threshold. Furthermore sin
e Y

p

and Y

n

are related

by the 
ondition Y

p

+ Y

n

= 1, the equation (G.15) 
an be used to 
ombine (G.14)

and (G.16) to give an expression whi
h 
an be solved for the equilibrium proton

fra
tion (and so the equilibrium neutron fra
tion) given just n
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Above muon threshold, i.e. the di�eren
e between neutron and proton 
hem-

i
al potentials ex
eeds the rest mass of the muon, the following 
ondition also

holds
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(G.18)

where �
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is [106℄
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and it is known from (G.2) that �

�

= �

e

. Now the 
ondition for 
harge neutrality

gives
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: (G.20)

From (G.16) and (G.19) and the 
ondition �

e

= �

�

, the ele
tron fra
tion and the

muon fra
tion 
an be related as
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Now the expressions arising from the 
onditions
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an be solved to give Y
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and Y
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as a fun
tion of the baryon density n

b

.

Going ba
k to (G.1) the energy densities for ele
trons, muons and neutrinos

still need to be evaluated. They are [107, 105℄:
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where k = (3�
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. The ele
tron energy is approxi-

mated to be ultrarelativisti
. In addition there is a 
ontribution from the Coulomb

intera
tion. The dire
t term is zero due to the 
harge neutrality of the system, but

the ex
hange term provides a small 
ontribution:
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Now that the entire expression for the energy density is known, the pressure

may be evaluated. Sin
e the protons and neutrons intera
t strongly their partial

pressures 
annot be de�ned. Instead, the nu
leon pressure is 
al
ulated:
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The ele
tron, muon and neutrino pressures and the Coulomb ex
hange pressure

are 
al
ulated in the same way to be
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Now there is an expression for the pressure as a fun
tion of the spe
ies fra
-

tions and the baryon density. The fra
tions are themselves solvable given just

the baryon density, so by solving the equations given, one 
an evaluate the pres-

sure for a given density, whi
h gives us then the equation of state.

To relate the number density to the mass density the following relation is used
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This gives � in nu
lear units (MeV fm

-3




-2

). To 
overt to astrophysi
al units, the

following fa
tor is ne
essary:
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