LEB of Super-FRS

Martin Winkler
HISPEC/DESPEC/PRESPEC Meeting, March 1, 2010, GSI, Germany

- Status Super-FRS
- Status EB Magnet Development (India)
- Status Civil Construction
 (modularized version and consequences)
- Roadmap
Layout and Design parameters for the Super-FRS

Goal: Larger Acceptance

Projectile:
- Elements p - U
- Energy up to 1.5 GeV/u
- Intensity up to 10^{17}/s (depending on element)
- DC or pulsed operation

Design Parameters:
- $\varepsilon_x = \varepsilon_y = 40 \pi$ mm mrad
- $\Phi_x = \pm 40$ mrad
- $\Phi_y = \pm 20$ mrad
- $\Delta p/p = \pm 2.5\%$

- $B_p = 2 - 20$ Tm
- $R_{mn} = 750 / 1500$
 (first / second stage)
- Spot size on target
 $\sigma_x = 1.0$ mm
 $\sigma_y = 2.0$ mm

Focusing System

Driver Accelerator

Features:
- 2 Separator-stages in achromatic mode
- Separation by B_p-ΔE-B_p method (variable degrader)
- Multi-branch system
- Large acceptance utilizing sc magnets
- Handling concept for high-radiation area

M. Winkler, HISPEC/DESPEC/PRESPEC Meeting, March 1, 2010, GSI, Germany
Technical Challenges

Remote Handling

Target & Beam Catcher

Cryogenics

SC Multiplets

Effective length (quads)
0.8 / 1.2 m

Aperture (warm)
± 190 mm

Pole radius
240 mm

Field gradient
1.0 - 10.0 T/m

SC Dipoles

Main-Separator

Beam Dumps

Production Target System

Radiation Resistant Magnets

Degrader 1

Exit Slit Pre-Separator

Degrader 2

Hi

M. Winkler, HISPEC/DESPEC/PRESPEC Meeting, March 1, 2010, GSI, Germany
Layout of the Low-Energy Branch
(Energy Buncher Mode, status TDR)

<table>
<thead>
<tr>
<th>Energy Buncher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bend</td>
</tr>
<tr>
<td>Max. magnetic rigidity</td>
</tr>
<tr>
<td>Length</td>
</tr>
<tr>
<td>Acceptance</td>
</tr>
<tr>
<td>- horizontal Φ_x</td>
</tr>
<tr>
<td>- vertical Φ_y</td>
</tr>
<tr>
<td>- momentum $\Delta p/p$</td>
</tr>
<tr>
<td>1st order momentum resolution $\left(\epsilon_x = 300 \pi \text{ mm mrad}\right)$</td>
</tr>
</tbody>
</table>
Quadrupole:
(separator type)
$L_{\text{eff}} = 0.8/1.2$ m
$R_{\text{Warm}} = 190$ mm
$g_{\text{max}} = 10$ T/m

Dipole (unit):
$\rho = 4.35$ m
$\phi = 22.5^\circ$
$B_{\text{max}} = 1.6$ T
$W = \pm 350$ mm
$G = \pm 100$ mm

Quadrupole:
$L_{\text{eff}} = 0.8/1.2$ m
$R_{\text{Warm}} = 300$ mm
$g_{\text{max}} = 4.7/5.2$ T/m

M. Winkler, HISPEC/DESPEC/PRESPEC Meeting, March 1, 2010, GSI, Germany
Alternative 2 Layout for the Energy Buncher
(3 x 30° dipole units)

Dipole (unit):
- $\rho = 4.35$ m
- $\phi = 30.0^\circ$
- $B_{\text{max}} = 1.6$ T
- $W = \pm 350$ mm
- $G = \pm 100$ mm

Quadrupole (only 5!):
- $L_{\text{eff}} = \text{only 1.2 m}$
- $R_{\text{Warm}} = 300$ mm
- $g_{\text{max}} = 5.2$ T/m
Status EB Dipole Magnet Design
(Magnetic Design)

File: c:\fair\dipo3d.spw (06-01-10)

FAIR DIPOLE FIELD QUALITY $\Delta B / B$ (3D CALC.)
(Field along the median plane)

- NO PURCELL FILTER
- RECTANGULAR PURCELL FILTER
- CROSS-SHAPED PURCELL FILTER

<table>
<thead>
<tr>
<th>B / B</th>
<th>-0.002</th>
<th>0.000</th>
<th>0.002</th>
<th>0.004</th>
<th>0.006</th>
<th>0.008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni = 22,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni = 100,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni = 180,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Horizontal Distance from Centre (cm)
Status Dipole Magnet Design
(Conductor and Coil)

Coil Stress Analysis

- Stress due to magnetic force only
- Thermal analysis is to be performed to include the thermal stress on the coil and its supports

Coice of Conductor

- Superconducting Strands: NbTi
- Filament diameter: (50-105) μm
- No of the filaments: 55
- Diameter of the core wire: 0.63 mm
- Ratio of Cu and no Cu: 14
- Critical current Ic: 813 @ 4.2 K & 1.6 T
- Critical temperature Tcs: 7K
- Operating temperature Top: 4.2 K
- Operating current Iop: 246A
- RRR of Cu in strand: 107 ± 11
- Current density: 109 A/mm2
Status Dipole Magnet Design
(Cryostat Design)

M. Winkler, HISPEC/DESPEC/PRESPEC Meeting, March 1, 2010, GSI, Germany
A. Analysis of Magnetic and Thermal stress on iron
B. Stacking force and tie bolt design
C. End plate chamfer geometry from magnetic field requirement
EB Magnets: Open Questions

• Deflection angle of dipole magnets (4 x 22.5° versus 3 x 30°)
• 5 quads (1 type) versus 6 quads (2 different types); same 'magnetic length'
• Requires 1st dipole magnet better field quality?
• Are higher-order corrections (sextupole magnets) necessary?
• (Later:) India is not equipped to provide cold tests
Super-FRS Buildings
(as presented for ZBau)

- #18 (Target building)
- #103 (Super-FRS tunnel)
- #6a (Service building)
- #6b (Low-Energy cave)
- #6c (High-Energy cave)
- #6 (High-Energy cave)
- #104 (SIS connection)
- Direct beam line to NESR
- CR
- pbar production

M. Winkler, HISPEC/DESPEC/PRESPEC Meeting, March 1, 2010, GSI, Germany
Experimental Area
(as presented for ZBau)

Geb. #6a Service building
- 3 floors (~2000 m²)
- Technique (PS, controls, ...)
- Experiment preparation
- Control room, electronics

#6b Experiment
(LASPEC/MATS)

Geb. #6a
(Cryogenic DB2)

#6b Experiment
(HISPEC/DESPEC Energy Buncher/Spectrometer)

#6 Experiment (R3B)
on top #17.2 Service building
(FAIR technique, PS of GLAD)

CR/NESR
<table>
<thead>
<tr>
<th>Year</th>
<th>Development Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Recommendation by WissenschaftsRat – FAIR Realisation in three stages</td>
</tr>
<tr>
<td>2005</td>
<td>Entire Facility Baseline Technical Report</td>
</tr>
<tr>
<td>2007</td>
<td>Phase A</td>
</tr>
<tr>
<td>2009</td>
<td>Modularized Start Version</td>
</tr>
</tbody>
</table>

2009

- **Module 0 SIS100**
 - expt areas CBM/HADES and APPA
- **Module 1**
 - Super-FRS fixed target area NuSTAR
- **Module 3**
 - pbar facility, incl. CR for PANDA, options for NuSTAR
- **Module 4**
 - LEB for NuSTAR, NESR for NuSTAR and APPA, FLAIR for APPA
- **Module 5**
 - RESR nominal intensity for PANDA & parallel operation with NuSTAR and APPA
- **Module 6 SIS300**

B. Sharkow, FAIR Monthly, 17.2.2010;
http://www-win.gsi.de/fjct/monthly/100217/CAEN%20Status%20of%20the%20FAIR%20Project_1.pdf, P5
Accommodate LEB experiments at available Super-FRS branch

- **HISPEC**: In-Flight Spectroscopy
- **DESPEC**: Decay Spectroscopy
- **MATS**: Penning trap system (Masses, Trap Assisted Spectroscopy)
- **LASPEC**: LASER Spectroscopy (Spins, Moments, isotope shifts)

Primary Beams
- 10^{12}/s; 1.5-2 GeV/u; 238U$^{28+}$
- Factor 100-1000

Secondary Beams
- up to factor 10000

Super-FRS

- **R3B**: (full capability)
 Reactions with Relativistic Radioactive Beams in complete kinematics

- **ILIMA in CR**:
 Masses and Half-lives for short-lived ions

B. Sharkow, FAIR Monthly, 17.2.2010;
http://www-win.gsi.de/fjct/monthly/100217/CAEN%20Status%20of%20the%20FAIR%20Project_1.pdf, P27
New Experimental Area 2010
(as discussed with DK/FCC Feb. 2010)
New Experimental Area 2010
(how to arrange MATS/LASPEC ?)
New Experimental Area 2010
(how to arrange MATS/LASPEC ?)
Roadmap

- Start of construction activities 2010/11
- Schedule is driven by **civil construction**
- Aim for earliest commissioning of accelerators and respective experiments

<table>
<thead>
<tr>
<th>Module</th>
<th>Construction time (months)</th>
<th>Ready for instalation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>72</td>
<td>2015 / 16</td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>2015 / 16</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>2016</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>2016</td>
</tr>
</tbody>
</table>

B. Sharkow, FAIR Monthly, 17.2.2010;
http://www-win.gsi.de/fjct/monthly/100217/CAEN%20Status%20of%20the%20FAIR%20Project_1.pdf, P39