STUDY OF THE SINGLE-PARTICLE PROPERTIES OF UNSTABLE NUCLEI WITHIN THE DISPERSIVE OPTICAL MODEL

Klimochkina A.A., klimann16@gmail.com
Bespalova O.V., besp@sinp.msu.ru
Some properties of neutron-rich Ca, Zr nuclei

- New data on the properties of neutron-rich Ca nuclei

\(^{60}\text{Ca} \)

RIKEN, Japanese

- New magic number \(N = 32, 34 \)

\(^{34}\text{Ca} \)

- Deformation of Zr isotopes with \(98<A<116 \)

Neutron thickness skin: $\Delta R_{np} = R_n - R_p$

Properties of halo nuclei
- Small (less than 2 MeV) nucleon separation energy S_n
- Valence nucleon is in a state with a small l
- Other
Application of the dispersive approach

- Mean-field theories (HFB with Skyrme, Gorny interaction)
- Shell models
- “Ab initio” (for light nuclei)

✅ Tensor force
✅ Deformation
✅ Spin-orbit interaction depends on density.

Dispersive optical model

- Mean field of dispersive optical model (DOM) is complex:
 \[U(r, E) = V(r, E) + iW(r, E) \]

- \(V(r, E_{nlj}) \) is the real part of the dispersive optical potential (DOP)
 \[V(r, E) = V_{HF}(r, E) + \Delta V(r, E) \]

- The dispersion relation
 \[\Delta V_{s(d)}(r, E) = (E_F - E) \frac{P}{\pi} \int_{-\infty}^{\infty} \frac{W_{s(d)}(r, E')}{(E' - E_F) \cdot (E - E')} dE' \]
Dispersive optical models

2) E. Sh. Soukhovitski˜ı, R. Capote,2,* J. M. Quesada et al, PHYS. REV. C 94, 064605 (2016)

Scientific reserve

- **Density distributions of** 90Zr, 208Pb, $^{116-124}$Sn nuclei Беспалова О.В., Бобошин И.Н., Варламов В.В., Ишханов Б.С., Романовский Е.А., Спасская Т.И. в журнале Известия Российской академии наук. Серия физическая, том 65, № 11, с. 1553-1557

- **Calculation of charge(proton)and matter(neutron) density distributions of Ca nuclei including those located far from the beta-stability valley.** Russian Foundation for Basic Research (project no. 16-32-00388 mol_a)

Dispersive optical potential

- \(V (r, E_{nlj}) \) is the real part of the dispersive optical potential (DOP)

\[
-V(r, E_{nlj}) = V_R(E_{nlj}) f(r, r_v, a_v) + 2V_{so}(E_{nlj}) \frac{1}{r} \frac{df(r, r_{so}, a_{so})}{dr} - V_C(r)
\]

- The central part of the DOP

\[
U_p(r, E) = V_{HF}(r, E) + \Delta V(r, E) + iW_I(r, E) = V_{HF}(E) f(r, r_{HF}, a_{HF}) + \Delta V_s(E) f(r, r_s, a_s) - 4a_d \Delta V_d(E) \frac{d}{dr} f(r, r_d, a_d) +
\[+iW_s f(r, r_s, a_s) - i4a_d W_d \frac{d}{dr} f(r, r_d, a_d).
\]

- The spin-orbit potential:

\[
U_{so}(r, E) = 2V_{so}(E) \frac{1}{r} \frac{d}{dr} f(r, r_{so}, a_{so})|I_s
\]

- \(V_C(r) \) is the Coulomb potential (for protons), which is usually taken to be that of a uniformly charged sphere of radius \(R_C = r_C A^{1/3} \)
Imaginary part of DOP

- Parametrization of $W(r, E)$:

 \[J_{i,s}(E) = \alpha_i \frac{(E - E_0)^4}{(E - E_0)^4 + \beta_{i,s}^4} \]

 \[J_d(E) = J_I(E) - J_s(E) \]

- Mass models: AME16, HFB24, KTUY05.

- Fermi energy:

 \[E_F = -1/2(S_i(A) + S_i(A+1)) \]

Imaginary part of DOP

- Accounting for non-locality of the imaginary part

\[
E < E_F - E_a \\
W_v^{\text{neloc}}(E) = W_v(E) \left[1 - \frac{(E_F - E - E_a)^2}{(E_F - E - E_a)^2 + E_a^2} \right]
\]

\[
E > E_F + E_a \\
W_v^{\text{neloc}}(E) = W_v(E) + \alpha_v \left[\sqrt{E} + \frac{(E_F + E_a)^{3/2}}{2E} - \frac{3}{2} \sqrt{E_F + E_a} \right]
\]
Real part of DOP

- Parameterization real part of DOP

\[V_{HF}(E) = V_{HF}(E_F) \exp \left[-\gamma(E - E_{F}) \right] \]

- Condition of agreement between summed number of nucleons in bound states and \(N(Z) \) number of the isotope.

\[N_{n(p)} = \sum (2j + 1) N_{nlj}^{n(p)} \]

- Schrodinger equation for bound states

\[\left[-\nabla^2 + V(r, E_{nlj}) \right] \Phi_{nlj}(r) = E_{nlj} \Phi_{nlj}(r) \]

The occupation probabilities

\[N_{nlj}^{n(p)}(E_{nlj}^{DOP}) = \frac{1}{2} \cdot \frac{1 - \left(\frac{E_{nlj}^{DOP} - E_F}{\sqrt{(E_{nlj}^{DOP} - E_F)^2 + (\Delta)^2}} \right)} \]

- Pairing gap parameter

\[\Delta = -\frac{1}{4} \left\{ S_i(A+1,Z) - \frac{1}{2} S_i(A,Z) + S_i(A-1,Z) \right\} \]

For \(E_{nlj} < E_F \)

\[N_{nlj} = 1 - \int_0^\infty \tilde{u}_{nlj}^2(r) \left\{ m_{HF}^* / m(r, E_{nlj}) \right\}^{1/2} \pi^{-1} \int_{E_{nlj}}^\infty \frac{W(r, E')}{(E' - E_{nlj})^2} dE' \] \[dr \]

For \(E_{nlj} > E_F \)

\[N_{nlj} = \int_0^\infty \tilde{u}_{nlj}^2(r) \left\{ m_{HF}^* / m(r, E_{nlj}) \right\}^{1/2} \pi^{-1} \int_{E_{nlj}}^{E_F} \frac{W(r, E')}{(E' - E_{nlj})^2} dE' \] \[dr \]
^{40}Ca, scattering data
208Pb, scattering data

Differential elastic scattering cross sections calculated with DOP for the system a) n^{+208}Pb
b) p^{+208}Pb

Neutron total interaction (a) and proton total reaction (b) cross-sections for 208Pb
Density distribution of stable nuclei

\[\rho_p(n)(r) = \frac{1}{4\pi} \sum_{n,l,j} (2j + 1) N_{nlj} U_{nlj}^2(r) \]

\[\rho_{ch}(r) = (\pi a^2)^{-3/2} \int \rho_p(r') \exp\left[-(r - r')^2/a^2\right] dr' \]

\[<r^2>^{1/2} = \left[\frac{\int_0^\infty r^4 \rho(r) dr}{\int_0^\infty r^2 \rho(r) dr} \right]^{1/2} \]

<table>
<thead>
<tr>
<th></th>
<th>(r_{ch}^{эксп})</th>
<th>(r_{ch}^{ДОМ})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{40}\text{Ca})</td>
<td>3.4770(0.0012)</td>
<td>3.42</td>
</tr>
<tr>
<td>(^{42}\text{Ca})</td>
<td>3.5086(0.0013)</td>
<td>3.48</td>
</tr>
<tr>
<td>(^{44}\text{Ca})</td>
<td>3.5182(0.0013)</td>
<td>3.51</td>
</tr>
<tr>
<td>(^{46}\text{Ca})</td>
<td>3.4956(0.0013)</td>
<td>3.49</td>
</tr>
<tr>
<td>(^{48}\text{Ca})</td>
<td>3.4772(0.0013)</td>
<td>3.44</td>
</tr>
</tbody>
</table>
Fragmentation widths for ^{208}Pb

Spectroscopic factors of neutron states for Ca isotopes

$$\Gamma_{nlj} = \frac{2 \langle W_{nlj}(E_{nlj}) \rangle}{\langle m^*_{nlj} / m \rangle}$$

$$m^*(r, E) = m \left(1 - \frac{d}{dE} V(r, E)\right)$$

$$S_{nlj} = \int_0^\infty \left[\bar{u}_{nlj}^2(r) \left(m / m(r, E_{nlj}) \right) \right] dr$$
Neutron single-particle energies, Ca isotopes

EXP. DATA: I. N. Boboshin, Magic numbers and evolution of the shell structure of atomic nuclei, Doctor thesis (Lomonosov Moscow State University, Scobeltsyn Institute of Nuclear Physics, 2010)
Neutron single-particle energies, Zr isotopes
Root mean square radii and neutron skin

\[\langle r_n^2 \rangle = \frac{\int_0^\infty r^4 \rho(r) \, dr}{\int_0^\infty r^2 \rho(r) \, dr} \]^{1/2} \]

Neutron skin thickness:

\[\Delta r_{np} = \sqrt{\langle r^2 \rangle_n} - \sqrt{\langle r^2 \rangle_p} \]

Neutron density Ca and Zr isotopes
Neutron-rich Ca isotopes

\[N_{h}(^{68}\text{Ca}) = 1.7 \]
\[N_{h}(^{70}\text{Ca}) = 1.9 \]

Root-mean-square radius for nli-state

\[R_{nlj}^{\text{rms}} = \left[\int_{0}^{\infty} \bar{u}_{nlj}^2(r) r^4 dr \right]^{1/2} \]

<table>
<thead>
<tr>
<th>nlj</th>
<th>R_{nlj} (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2d_{5/2}</td>
<td>9.0</td>
</tr>
<tr>
<td>2d_{3/2}</td>
<td>9.1</td>
</tr>
<tr>
<td>3s_{1/2}</td>
<td>11.9</td>
</tr>
<tr>
<td>1g_{9/2}</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Density distribution for ^{70}Ca
Neutron-rich Zr isotopes
Neutron density of 128Zr nucleus

$$\sigma_{nlj} = \frac{4\pi r^2}{(2j + 1) \rho_{nlj}}$$

\[
\begin{align*}
\left\{ \begin{array}{l}
 r_0 > r_{\text{max}}, \\
 \frac{\partial^2 \log_{10} \rho(r)}{\partial r^2} \bigg|_{r=r_0} = \frac{2}{5} \frac{\partial^2 \log_{10} \rho(r)}{\partial r^2} \bigg|_{r=r_{\text{max}}},
\end{array} \right.
\end{align*}
\]

\[
N_{\text{halo}} = 4\pi \int_{r_0}^{+\infty} \rho^n(r) r^2 dr.
\]
Summary

1. Good agreement with the available experimental data for the stable nuclei was achieved by unified manner.

2. DOM calculation predicts a sharp increase of the neutron radii of Ca and Zr isotopes far away from the β-stability valley.

3. The obtained results suggest that the neutron halo structure forms in neutron rich Ca and Zr nuclei in the vicinity of the neutron drip line.
 ✓ Single-particle states contributing to the halo are determined.
 ✓ The number of nucleons in halo states is estimated.
 ✓ The obtained results are in qualitative agreement with the calculations by the Hartree-Fock-Bogolyubov relativistic model with the continuum.
 ✓ Halo states of Ca and Zr isotopes has low orbital moment l. The state located below is characterized by high orbital moment l.

4. The present study that demonstrates DOM is a powerful tool to predict single-particle characteristics of nuclei far away from the β-stability valley.
Thank you for attention!